Instrumenting the Fetal Membrane on a Chip

在芯片上检测胎儿膜

基本信息

  • 批准号:
    10651647
  • 负责人:
  • 金额:
    $ 61.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The first time the immune system can respond to a pathogen is in utero during infections of the fetal membrane. Infection involving the fetal membranes is extremely difficult to study in utero, both because of inaccessibility and the nature of the complicated interface between mother and child. Thus, studies of pregnancy-related conditions benefit from an in vitro model of the fetal membrane, i.e., a highly instrumented fetal membrane on a chip (IFMOC). Specifically, the overarching goal of this research project is to apply multidimensional analytical technologies and microfluidics engineering design to define immune response biosignatures of infection in the in vitro fetal membrane. Given these signatures, our ultimate long-range goal for this bench-to-bedside research program is to develop a simple, inexpensive, and robust lab-on-a-chip system that will permit accurate etiologic diagnosis of infections early during the course of illness based on systemic host-response signatures of infection. We will also utilize sensitive and specific methodologies to differentiate acute infections from pre-existing chronic infections and/or asymptomatic microbial colonization. This work will be based on a fundamental understanding of the human systems biology of infectious diseases and will benefit from recent advances in organ-on-chip microfluidics, optical, amperometric, and enzymatic sensors, and mass spectrometry. Our initial multianalyte sensor profiles are focused on cellular bioenergetics using glucose consumption and lactate production and oxidative burst by superoxide production measured by our microfabricated amperometric sensors as well as MIC-1 protein secretion by the quartz crystal microbalance; subsequently these signatures will be expanded with ion mobility-mass spectrometry (IM-MS).
免疫系统第一次对病原体做出反应是在子宫内感染期间 胎膜的。涉及胎膜的感染极难治愈 在子宫内进行研究,既因为交通不便,又因为其复杂性 母亲和孩子之间的界面。因此,对妊娠相关病症的研究 受益于胎膜的体外模型,即高度仪器化的胎儿 芯片上的膜(IFMOC)。具体来说,该研究项目的总体目标 是应用多维分析技术和微流控工程设计 定义体外胎膜感染的免疫反应生物特征。 鉴于这些特征,我们这项从实验室到临床研究的最终长期目标 该计划的目的是开发一个简单、廉价且强大的片上实验室系统,该系统将 允许在病程早期对感染进行准确的病原学诊断 关于感染的全身宿主反应特征。我们还将利用敏感和 区分急性感染和先前存在的慢性感染的具体方法 感染和/或无症状微生物定植。这项工作将基于 对传染病和意志的人类系统生物学的基本了解 受益于片上器官微流体、光学、电流分析和 酶传感器和质谱分析。我们最初的多分析物传感器配置文件是 专注于利用葡萄糖消耗和乳酸产生的细胞生物能学, 通过我们的微型安培计测量超氧化物产生的氧化爆发 传感器以及石英晶体微天平分泌的 MIC-1 蛋白; 随后,这些特征将通过离子淌度质谱法得到扩展 (IM-MS)。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trace Oxygen Affects Osmium Redox Polymer Synthesis for Wired Enzymatic Biosensors.
微量氧气影响有线酶生物传感器的锇氧化还原聚合物合成。
  • DOI:
    10.1149/1945-7111/ac42a0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Calhoun,MargaretC;Stachurski,ChristopherD;Winn,SaraL;Gizzie,EvanA;Daniel,AaronW;Schley,NathanD;Cliffel,DavidE
  • 通讯作者:
    Cliffel,DavidE
Chlorpyrifos Disrupts Acetylcholine Metabolism Across Model Blood-Brain Barrier.
Adsorption and Electropolymerization of p-Aminophenol Reduces Reproducibility of Electrochemical Immunoassays.
  • DOI:
    10.3390/molecules27186046
  • 发表时间:
    2022-09-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Buckey G;Owens OE;Gabriel AW;Downing CM;Calhoun MC;Cliffel DE
  • 通讯作者:
    Cliffel DE
Insights and prospects for ion mobility-mass spectrometry in clinical chemistry.
  • DOI:
    10.1080/14789450.2022.2026218
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Koomen DC;May JC;McLean JA
  • 通讯作者:
    McLean JA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID E CLIFFEL其他文献

DAVID E CLIFFEL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID E CLIFFEL', 18)}}的其他基金

Potentiating Psilocybin
增强裸盖菇素
  • 批准号:
    10354547
  • 财政年份:
    2022
  • 资助金额:
    $ 61.85万
  • 项目类别:
Potentiating Psilocybin
增强裸盖菇素
  • 批准号:
    10602394
  • 财政年份:
    2022
  • 资助金额:
    $ 61.85万
  • 项目类别:
Instrumenting the Fetal Membrane on a Chip
在芯片上检测胎儿膜
  • 批准号:
    10037372
  • 财政年份:
    2020
  • 资助金额:
    $ 61.85万
  • 项目类别:
Instrumenting the Fetal Membrane on a Chip
在芯片上检测胎儿膜
  • 批准号:
    10430227
  • 财政年份:
    2020
  • 资助金额:
    $ 61.85万
  • 项目类别:
Instrumenting the Fetal Membrane on a Chip
在芯片上检测胎儿膜
  • 批准号:
    10249282
  • 财政年份:
    2020
  • 资助金额:
    $ 61.85万
  • 项目类别:
The Fisk-Vanderbilt Biomedical Bridge to the Doctorate
菲斯克-范德比尔特生物医学博士桥梁
  • 批准号:
    8575127
  • 财政年份:
    2013
  • 资助金额:
    $ 61.85万
  • 项目类别:
The Fisk-Vanderbilt Biomedical Bridge to the Doctorate
菲斯克-范德比尔特生物医学博士桥梁
  • 批准号:
    8734456
  • 财政年份:
    2013
  • 资助金额:
    $ 61.85万
  • 项目类别:
The Fisk-Vanderbilt Biomedical Bridge to the Doctorate
菲斯克-范德比尔特生物医学博士桥梁
  • 批准号:
    8883627
  • 财政年份:
    2013
  • 资助金额:
    $ 61.85万
  • 项目类别:
The Fisk-Vanderbilt Biomedical Bridge to the Doctorate
菲斯克-范德比尔特生物医学博士桥梁
  • 批准号:
    9274302
  • 财政年份:
    2013
  • 资助金额:
    $ 61.85万
  • 项目类别:
Epitope Discovery via Nanocluster Presentation
通过纳米簇展示发现表位
  • 批准号:
    7783751
  • 财政年份:
    2006
  • 资助金额:
    $ 61.85万
  • 项目类别:

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
  • 批准号:
    52308532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
  • 批准号:
    82373112
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
  • 批准号:
    82372435
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Standard Grant
励起電子の局所的短寿命化による超高速レーザナノ加工
通过局部缩短激发电子的寿命进行超高速激光纳米加工
  • 批准号:
    24KJ0748
  • 财政年份:
    2024
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Continuing Grant
超高精度・高速応答をともなったフィードバック制御式共振型マイクロ加速度センサ
超高精度、高速响应的反馈控制型谐振微加速度传感器
  • 批准号:
    24K07381
  • 财政年份:
    2024
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
スマート工場を加速させる新概念の放熱主体エッジAI開発に向けた多値伝送技術
多值传输技术,开发基于散热的新概念边缘人工智能,加速智能工厂
  • 批准号:
    24K14887
  • 财政年份:
    2024
  • 资助金额:
    $ 61.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了