Mutational Analysis of Tradeoffs between Receptor Affinity and Antibody Escape for SARS-CoV-2 Variants of Concern
SARS-CoV-2 相关变体的受体亲和力与抗体逃逸之间权衡的突变分析
基本信息
- 批准号:10647809
- 负责人:
- 金额:$ 18.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-16 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVACE2AccelerationAddressAffinityAntibodiesBindingBiological AssayCOVID-19 pandemicCOVID-19 vaccineComputer ModelsData SetDevelopmentEvaluationFlow CytometryFutureGoalsHumanHumanitiesImmune responseInfectionLinkMeasuresModelingMutationMutation AnalysisOutcomePropertyProteinsResearchResistanceSARS-CoV-2 B.1.617.2SARS-CoV-2 P.1SARS-CoV-2 variantSamplingSerumSiteSurfaceTechniquesTestingTherapeutic antibodiesTimeTrainingVaccinatedVaccinationVaccinesValidationVariantViralVirusWorkYeastscurrent pandemicdeep sequencingdefined contributionfuture pandemicimprovedinterestmachine learning modelmachine learning predictionmutantneutralizing antibodynovelnovel strategiespredictive modelingreceptorreceptor bindingresponsevaccine distributionvaccine-induced antibodiesvariants of concern
项目摘要
Emerging SARS-CoV-2 variants are of broad interest because they may be more resistant to current vaccines
and associated immune responses. Toward the long-term goal of understanding how receptor-binding domain
(RBD) mutations impact transmissibility, it is critical to elucidate the impacts of RBD mutations on ACE2 affinity
and antibody escape. This information is important because RBD mutations can strongly modulate ACE2 affinity,
which is linked to changes in viral infectivity, and antibody escape, which is linked to changes in antibody
neutralization potency. Moreover, this information is also important because of the inherent tradeoffs between
ACE2 affinity and antibody escape, as many RBD mutations that strongly increase one property also strongly
decrease the other property, suggesting that evaluating either property in isolation is unlikely to explain how RBD
mutations impact SARS-CoV-2 transmissibility. Therefore, the Tessier lab has developed machine learning
models to describe the impact of single and multisite RBD mutations on ACE2 affinity and antibody escape. This
approach uses large but sparsely sampled experimental datasets that measure the impact of single and multisite
RBD mutations on ACE2 affinity and antibody escape to train machine learning models. Next, the models are
used to predict the impact of vast numbers of additional RBD mutations that are absent in the experimental
datasets. The goal of this proposal is to use machine learning models and multiple experimental techniques to
predict and experimentally evaluate the impacts of additional RBD mutations in Variants of Concern, such as the
Delta variant, on ACE2 affinity and antibody escape. The hypothesis is that the models will be able to identify
additional single and multisite mutations in the RBDs of key Variants of Concern that strongly modulate ACE2
affinity and/or antibody escape. To test this hypothesis, in Aim 1, predictions of the impact of additional single
and multisite mutations in the RBDs of Variants of Concern on ACE2 affinity and infectivity will be tested. This
Aim will involve testing these predictions using i) yeast surface display of RBDs and flow cytometry to measure
ACE2 affinity, and ii) pseudovirus assays to measure infectivity. No live viruses will be generated or tested in
this work. Next, in Aim 2, predictions of the impact of additional single and multisite mutations in the RBDs of
Variants of Concern on antibody escape and neutralization will be tested. The human serum samples that will
be used are from donors that were either infected, vaccinated, or infected and subsequently vaccinated. This
Aim will involve testing the model predictions using i) yeast surface display of RBDs and flow cytometry to
measure antibody binding, and ii) pseudovirus assays to measure antibody neutralization. A key expected
outcome will be the optimization and validation of models that can be used to aid in the rapid identification of the
most threatening emerging SARS-CoV-2 variants. This integrated experimental and computational approach
holds great potential for use in improving vaccine and therapeutic antibody development to address current and
future pandemics.
新兴的SARS-COV-2变体具有广泛的兴趣,因为它们可能对当前疫苗具有更大的抵抗力
和相关的免疫反应。朝着理解受体结合领域的长期目标
(RBD)突变会影响传播性,阐明RBD突变对ACE2亲和力的影响至关重要
和抗体逃脱。此信息很重要,因为RBD突变可以强烈调节ACE2亲和力,
这与病毒感染性的变化和抗体逃脱有关,这与抗体的变化有关
中和效力。此外,此信息也很重要,因为
ACE2亲和力和抗体逃脱,因为许多RBD突变也强烈增加了一个特性
降低另一个特性,表明在孤立中评估任何一个特性都不可能解释RBD
突变会影响SARS-COV-2的传播。因此,Tessier实验室已经开发了机器学习
描述单个和多站点RBD突变对ACE2亲和力和抗体逃逸的影响。这
方法使用大型但稀少的实验数据集,这些数据集测量了单一和多站点的影响
关于ACE2亲和力和抗体的RBD突变逃避了训练机器学习模型。接下来,模型是
用于预测实验中不存在的大量其他RBD突变的影响
数据集。该建议的目的是使用机器学习模型和多种实验技术来
预测和实验评估其他RBD突变在关注的变体中的影响,例如
delta变体,在ACE2亲和力和抗体逃逸。假设是模型将能够识别
关键变体的RBD中的其他单一和多站点突变,这些变体强烈调节ACE2
亲和力和/或抗体逃脱。在AIM 1中检验这一假设,预测了其他单一的影响
将测试有关ACE2亲和力和感染性的RBD中的多站点突变。这
AIM将涉及使用i)酵母表面显示RBD和流式细胞术的酵母表面显示这些预测
ACE2亲和力,ii)假病毒测定法测量感染力。不会在
这项工作。接下来,在AIM 2中,预测了其他单点突变在RBD中的影响
将测试对抗体逃生和中和的关注变体。人类血清样品将
使用的是从感染,接种疫苗或感染并随后接种疫苗的捐助者。这
AIM将涉及使用i)酵母表面显示RBD和流式细胞术的模型预测
测量抗体结合,ii)假病毒测定法测量抗体中和。预期的关键
结果将是可用于快速识别的模型的优化和验证
最威胁性的新兴SARS-COV-2变体。这种集成的实验和计算方法
在改善疫苗和治疗性抗体开发方面拥有巨大的潜力,以解决当前和
未来的大流行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter M Tessier其他文献
Peter M Tessier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter M Tessier', 18)}}的其他基金
Neuronal Silencing of ATXN3 Using Peripherally Administered Antibody/ASO Conjugates That Penetrate the Blood-Brain Barrier
使用可穿透血脑屏障的外周给药抗体/ASO 缀合物对 ATXN3 进行神经元沉默
- 批准号:
10646563 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Mutational Analysis of Tradeoffs between Receptor Affinity and Antibody Escape for SARS-CoV-2 Variants of Concern
SARS-CoV-2 相关变体的受体亲和力与抗体逃逸之间权衡的突变分析
- 批准号:
10510890 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
Structure-guided antibody targeting of pre-selected epitopes in amyloidogenic aggregates
结构引导抗体靶向淀粉样蛋白聚集体中预先选择的表位
- 批准号:
10387799 - 财政年份:2020
- 资助金额:
$ 18.57万 - 项目类别:
Structure-guided antibody targeting of pre-selected epitopes in amyloidogenic aggregates
结构引导抗体靶向淀粉样蛋白聚集体中预先选择的表位
- 批准号:
10599101 - 财政年份:2020
- 资助金额:
$ 18.57万 - 项目类别:
Structure-guided antibody targeting of pre-selected epitopes in amyloidogenic aggregates
结构引导抗体靶向淀粉样蛋白聚集体中预先选择的表位
- 批准号:
10372055 - 财政年份:2020
- 资助金额:
$ 18.57万 - 项目类别:
Design of Antibody Fragments Specific For Amyloidogenic Aggregates
淀粉样蛋白形成聚集物特异性抗体片段的设计
- 批准号:
9582129 - 财政年份:2014
- 资助金额:
$ 18.57万 - 项目类别:
Design of antibody fragments specific for amyloidogenic aggregates
淀粉样蛋白形成聚集物特异性抗体片段的设计
- 批准号:
8823800 - 财政年份:2014
- 资助金额:
$ 18.57万 - 项目类别:
Design of antibody fragments specific for amyloidogenic aggregates
淀粉样蛋白形成聚集物特异性抗体片段的设计
- 批准号:
8631424 - 财政年份:2014
- 资助金额:
$ 18.57万 - 项目类别:
Structural basis of species-specific infectivities of two prion strains
两种朊病毒株物种特异性感染性的结构基础
- 批准号:
7843591 - 财政年份:2009
- 资助金额:
$ 18.57万 - 项目类别:
Structural basis of species-specific infectivities of two prion strains
两种朊病毒株物种特异性感染性的结构基础
- 批准号:
7641394 - 财政年份:2009
- 资助金额:
$ 18.57万 - 项目类别:
相似国自然基金
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the role and therapeutic potential of the alpha5beta1 integrin in risk factors for COVID-19-associated cognitive impairment
研究 α5β1 整合素在 COVID-19 相关认知障碍危险因素中的作用和治疗潜力
- 批准号:
10658178 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
The Respiratory Microbiome in COVID-19: Associations with Severity, Risk Factors, and Host Pathways
COVID-19 中的呼吸道微生物组:与严重程度、风险因素和宿主途径的关联
- 批准号:
10750387 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Clinical analysis and therapeutic development of exosomal ACE2
外泌体ACE2的临床分析和治疗进展
- 批准号:
10666589 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别:
COVID-19-related blood-brain barrier and microstructural brain injury; Sex differences and synergy with Alzheimer's disease risk
COVID-19相关的血脑屏障和脑微结构损伤;
- 批准号:
10584896 - 财政年份:2022
- 资助金额:
$ 18.57万 - 项目类别: