Depression as a disease of network disruption: learning from multiple sclerosis
抑郁症是一种网络中断疾病:从多发性硬化症中学习
基本信息
- 批准号:10643057
- 负责人:
- 金额:$ 19.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdultAffectAgeAtrophicAttentionBiological MarkersBrainBrain regionChronic DiseaseClinicalClinical TrialsClinical assessmentsCognitionComputational TechniqueComputerized Medical RecordComputing MethodologiesDataData SetDiagnosisDimensionsDiseaseDorsalExclusionFascicleFemaleFiberFoundationsFunctional disorderHeterogeneityImageImmuneImpairmentKnowledgeLearningLesionLocationMagnetic Resonance ImagingMapsMeasuresMediatingMediationMedicalMental DepressionMentored Patient-Oriented Research Career Development AwardMentorshipMimosaModelingMultiple SclerosisNeurocognitiveParticipantPatientsPatternPennsylvaniaPerformancePersonsPhenotypePrevalenceProcessPsychiatryPublic HealthRecording of previous eventsReproducibilityResearchSamplingSeveritiesSex DifferencesSocietiesStrokeStructureSymptomsSystemTechniquesTestingTrainingUnited StatesUniversity resourcesVisitWhite Matter Diseasealgorithmic methodologiesautomated segmentationbiotypesclinical carecognitive functioncognitive testingcomorbid depressioncomorbiditycostdepressive symptomsexperiencegray matterindividual variationinstrumentmachine learning algorithmmachine learning methodmalenetwork dysfunctionneuropsychiatric symptompredictive modelingprogramsprospectivepsychiatric symptomrecruitsupervised learningsymptomatologytooltreatment stratificationwhite matter
项目摘要
PROJECT ABSTRACT/SUMMARY
Multiplesclerosis (MS) is an immune-mediatedneurological disorder that affects one million people in
the United States. Up to 50% of patients with MS experience depression, yet the mechanisms of depression in
MS remain under-investigated. MS is characterized by white matter lesions, suggesting that brain network
disruption may underly depression symptoms. Studies of medically healthy participants with depression have
described associations between white matter variability and depressive symptoms, but frequently exclude
participants with medical comorbidities and thus cannot be extrapolated to people with intracranial diseases.
Previous research using lesion network mapping, a technique for mapping heterogeneous gray matter lesions
to neuropsychiatric symptoms, has demonstrated that strokes in gray matter associated with depression disrupt
a reproducible depression network. However, such techniques have never been applied to white matter disease
or MS. Studying white matter lesions associated with depression in MS may provide a way to understand both
the pathophysiology of depression in MS and general network mechanisms of depression more broadly. The
purpose of this current study is to investigate how brain network disruption underlies depression by learning from
the example of multiple sclerosis. In Aim 1, I will delineate how depression in adults with MS is associated with
white matter lesion location and burden in a retrospective sample of 1,554 MS patients with research-grade 3T
MRIs acquired as part of clinical care. Depression and MS diagnoses will be obtained from the electronic medical
record. While this sample provides an ideal dataset for developing a model, the electronic medical record does
not contain granular depression measures. In Aim 2, I will obtain structured clinical and cognitive assessments
for MS patients and prospectively evaluate white matter integrity as a predictor of dimensional depressive
symptoms. However, it is possible that symptoms of depression may reflect heterogenous brain network
disruption patterns. Therefore, in Aim 3, I will use advanced semi-supervised machine learning methods to parse
heterogeneity in MS white matter lesion burden in the retrospective sample and test whether this model predicts
phenotypic heterogeneity in our deeply-phenotyped prospective sample. The support of the K23 award will
provide the applicant with the training necessary to achieve these aims. The training objectives will be
accomplished with the support of an outstanding mentorship team, Drs. Satterthwaite, Shinohara, Bassett, Bar-
Or, Fox, McCoy, and the world class resources of the University of Pennsylvania. Together, the proposed
scientific aims and training objectives will form the foundation for an independent research program that will use
techniques from computational psychiatry to understand depression in patients with medical comorbidities.
项目摘要/总结
多发性硬化症 (MS) 是一种免疫介导的神经系统疾病,影响着 100 万人
美国。高达 50% 的多发性硬化症患者患有抑郁症,但抑郁症的机制并不复杂
多发性硬化症的研究仍未充分。 MS 的特点是白质病变,表明大脑网络
干扰可能是抑郁症状的根源。对患有抑郁症的身体健康参与者的研究
描述了白质变异性与抑郁症状之间的关联,但经常排除
患有合并症的参与者,因此不能推断患有颅内疾病的人。
先前的研究使用病变网络映射,这是一种绘制异质灰质病变的技术
神经精神症状,已证明与抑郁症相关的灰质中风破坏了
一个可重复的抑郁症网络。然而,此类技术从未应用于白质疾病
或女士。研究与多发性硬化症抑郁症相关的白质病变可能提供一种了解两者的方法
多发性硬化症抑郁症的病理生理学以及更广泛的抑郁症的一般网络机制。这
当前这项研究的目的是通过学习来调查大脑网络破坏如何导致抑郁症
多发性硬化症的例子。在目标 1 中,我将描述成人多发性硬化症患者的抑郁症与以下疾病之间的关系:
1,554 名研究级 3T 多发性硬化症患者的回顾性样本中的白质病变位置和负担
作为临床护理的一部分获得的 MRI。抑郁症和多发性硬化症的诊断将从电子医疗中获得
记录。虽然此示例为开发模型提供了理想的数据集,但电子病历确实
不包含颗粒状抑制措施。在目标 2 中,我将获得结构化的临床和认知评估
针对多发性硬化症患者并前瞻性评估白质完整性作为维度抑郁的预测因子
症状。然而,抑郁症的症状可能反映了异质的大脑网络
破坏模式。因此,在目标3中,我将使用先进的半监督机器学习方法来解析
回顾性样本中 MS 白质病变负担的异质性,并测试该模型是否预测
我们的深度表型前瞻性样本中的表型异质性。 K23奖的支持将
为申请人提供实现这些目标所需的培训。培训目标将是
在杰出的导师团队 Drs. 的支持下完成了这项工作。萨特思韦特、筱原、巴塞特、巴尔——
或者,福克斯、麦考伊和宾夕法尼亚大学的世界级资源。共同提出的
科学目标和培训目标将构成独立研究计划的基础,该计划将使用
计算精神病学技术用于了解患有合并症的患者的抑郁症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Berlin Baller其他文献
Erica Berlin Baller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别: