Pathophysiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的病理生理学
基本信息
- 批准号:10641898
- 负责人:
- 金额:$ 54.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcidosisAcuteAffectAllelesBiological AssayBiophysicsBiopsyBumetanideCarbohydratesCellsChloridesChronicClinical TrialsComputer ModelsComputer SimulationCoupledDataDefectDevelopmentDietDiseaseExerciseExtravasationFastingFiberFunctional disorderGenesGenetically Engineered MouseGoalsHereditary DiseaseHourHumanHyperkalemic periodic paralysisHypokalemic periodic paralysisImpairmentInterventionInvestigationIon ChannelIon TransportIonsK ATPaseKnock-inKnock-in MouseKnowledgeLeadMagnetic Resonance ImagingMeasurementMicroelectrodesMissense MutationModelingMusMuscleMuscle FibersMutant Strains MiceMutationMyopathyMyotoniaOocytesParalysedPathogenesisPathway interactionsPatientsPhenotypePotassium ChannelPreclinical TestingPredispositionPreventionPumpRecoveryRecurrenceResearchResourcesRestRiskSarcolemmaSkeletal MuscleSodiumSodium ChannelSodium ChlorideSpecificityStressSystemTestingTherapeutic InterventionValidationVariantclinical phenotypecold temperaturedefined contributiondesignextracellulargain of functionhuman dataimprovedinsightmouse modelmuscle stiffnessmutantmutant mouse modelnovel strategiesnovel therapeutic interventionperiodic paralysispreventprogramsresponsesensorsimulationsymportersymptom managementtherapy designtimelinevoltage
项目摘要
Project Summary / Abstract
Periodic paralysis and myotonia are ion channelopathies of skeletal muscle with debilitating episodes of severe
weakness lasting hours to days and activity-dependent muscle stiffness. The long-term goal of this project is to
advance our understanding of disease mechanism in these disorders of muscle excitability and to apply this
knowledge in the design and pre-clinical testing of therapeutic interventions.
Much progress has been made in establishing a causal relationship between the biophysical defect of a
mutant channel and the clinical phenotype. For example, over 80 missense mutations have been identified in
the NaV1.4 sodium channel, and we have shown by functional expression studies, coupled with simulations of
fiber excitability, that mutations with gain of function changes (e.g. impaired inactivation) cause hyperkalemic
periodic paralysis (HyperPP) with myotonia. Alternatively, the NaV1.4 mutations in hypokalemic periodic
paralysis (HypoPP) are all R/X substitutions in S4 segments of voltage sensor domains that share a common
functional defect - the anomalous gating pore leakage current. In all forms of periodic paralysis, the transient
attacks of weakness result from sustained depolarization of 𝑉𝑟𝑒௦௧ and loss of excitability, which are often triggered
by stress, diet (carbohydrate, salt content, fasting), cold temperature, or exercise. The mechanisms by which
these triggers destabilize 𝑉𝑟𝑒௦௧, in the setting of a static defect for a mutant channel, are fundamental open
questions in the field and also represent opportunities for therapeutic intervention. A major impediment to
progress has been the scarce availability of affected muscle. We created three knock-in mutant mouse models
of PP that have robust phenotypes for HyperPP (NaV1.4-M1592V) or HypoPP (NaV1.4-R669H; CaV1.1-R528H).
These mouse models have led to new insights on disease mechanism (e.g. recovery from acidosis is a potent
trigger of HypoPP) and have led to novel therapeutic interventions that are now in clinical trials (bumetanide
inhibition of the NKCC1 cotransporter prevents HypoPP).
We will extend our investigations of periodic paralysis by focusing on the impact of ion gradients.
Changes in extracellular [K+]o are established triggers for HypoPP (low) or HyperPP (high), but relatively little is
known about Na+ and Cl- shifts in PP. Limited human data suggest an acute rise of [Na+]in during an episode of
HyperPP or chronically high [Na+]in for HypoPP. In addition, we showed that reducing Cl- influx completely
prevents HypoPP attacks. We have developed improved ion-selective microelectrodes, that in combination with
the unique resource of our knock-in mutant mice, will enable us to (1) characterize muscle fiber Na+ and Cl-
content at rest and during an attack of PP, (2) define the contribution of specific ion transport systems (mutant
NaV1.4, NKCC1, Na/K-ATPase, Cl- exchangers) in setting ion concentrations in muscle channelopathies, (3)
define the functional consequences of ion gradient perturbations in PP, based on computational modeling and
simulation, and (4) use these insights in the design and pre-clinical testing of disease-modifying interventions.
.
项目概要/摘要
周期性麻痹和肌强直是骨骼肌的离子通道病,伴有严重的衰弱发作
持续数小时至数天的无力和活动依赖性肌肉僵硬 该项目的长期目标是
我们提前了解这些肌肉兴奋性障碍的疾病机制并加以应用
治疗干预措施的设计和临床前测试方面的知识。
在建立生物物理缺陷之间的因果关系方面已经取得了很大进展。
例如,已鉴定出 80 多种错义突变。
NaV1.4 钠通道,我们通过功能表达研究以及模拟表明
纤维兴奋性,功能改变(例如失活受损)的突变导致高钾血症
周期性麻痹 (HyperPP) 伴有肌强直,或者是低钾性周期性麻痹的 NaV1.4 突变。
麻痹 (HypoPP) 是电压传感器域 S4 段中的所有 R/X 替换,它们共享一个共同点
功能缺陷——异常的门控孔漏电流 在所有形式的周期性麻痹中,瞬态现象。
无力发作是由于𝑉𝑟𝑒௦௧持续去极化和兴奋性丧失而引起的,这通常是触发的
压力、饮食(碳水化合物、盐含量、禁食)、寒冷温度或运动的机制。
这些触发器会破坏稳定,在突变通道静态缺陷的情况下,是根本性的开放
问题,也是治疗干预的一个主要障碍。
进展是受影响肌肉的稀缺性我们创建了三种基因敲入突变小鼠模型。
具有 HyperPP (NaV1.4-M1592V) 或 HypoPP (NaV1.4-R669H; CaV1.1-R528H) 稳健表型的 PP。
这些小鼠模型带来了对疾病机制的新见解(例如,从酸中毒中恢复是一种有效的方法)
HypoPP 的触发因素)并导致了目前正在进行临床试验的新型治疗干预措施(布美他尼
抑制 NKCC1 协同转运蛋白可预防 HypoPP)。
我们将通过关注离子梯度的影响来扩展对周期性麻痹的研究。
细胞外 [K+]o 的变化是 HypoPP(低)或 HyperPP(高)相对确定的触发因素,但很少有
关于 PP 中 Na+ 和 Cl- 变化的已知信息,有限的人类数据表明 [Na+]in 在 PP 发作期间急剧上升。
HyperPP 或 HypoPP 的长期高 [Na+]in 此外,我们还表明可以完全减少 Cl- 流入。
我们开发了改进的离子选择性微电极,可防止 HypoPP 攻击。
我们的敲入突变小鼠的独特资源将使我们能够 (1) 表征肌纤维 Na+ 和 Cl-
静止时和 PP 攻击期间的含量,(2) 定义特定离子传输系统的贡献(突变体
NaV1.4、NKCC1、Na/K-ATP 酶、Cl- 交换器)在肌肉通道病中设定离子浓度,(3)
基于计算模型和 PP 中离子梯度扰动的功能后果
模拟,(4) 在疾病缓解干预措施的设计和临床前测试中使用这些见解。
。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Retigabine suppresses loss of force in mouse models of hypokalaemic periodic paralysis.
- DOI:10.1093/brain/awac441
- 发表时间:2023-04-19
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN C. CANNON其他文献
STEPHEN C. CANNON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN C. CANNON', 18)}}的其他基金
Pathophysiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的病理生理学
- 批准号:
10277079 - 财政年份:2021
- 资助金额:
$ 54.61万 - 项目类别:
Pathophysiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的病理生理学
- 批准号:
10442584 - 财政年份:2021
- 资助金额:
$ 54.61万 - 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
- 批准号:
9528467 - 财政年份:2012
- 资助金额:
$ 54.61万 - 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
- 批准号:
10196933 - 财政年份:2012
- 资助金额:
$ 54.61万 - 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
- 批准号:
8496723 - 财政年份:2012
- 资助金额:
$ 54.61万 - 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
- 批准号:
8346112 - 财政年份:2012
- 资助金额:
$ 54.61万 - 项目类别:
Disease Pathogenesis and Modification for CaV1.1-Associated Hypokalemic Periodic
CaV1.1 相关低钾血症周期性疾病的发病机制和修饰
- 批准号:
8688911 - 财政年份:2012
- 资助金额:
$ 54.61万 - 项目类别:
Molecular Physiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的分子生理学
- 批准号:
7820641 - 财政年份:2009
- 资助金额:
$ 54.61万 - 项目类别:
Molecular Physiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的分子生理学
- 批准号:
8461384 - 财政年份:1994
- 资助金额:
$ 54.61万 - 项目类别:
Molecular Physiology of Myotonia and Periodic Paralysis
肌强直和周期性麻痹的分子生理学
- 批准号:
9108578 - 财政年份:1994
- 资助金额:
$ 54.61万 - 项目类别:
相似国自然基金
SARA影响锦江黄牛胃肠道微生物和宿主代谢的关联研究
- 批准号:31560647
- 批准年份:2015
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
亚急性瘤胃酸中毒对瘤胃上皮通透性的影响及机制研究
- 批准号:31472124
- 批准年份:2014
- 资助金额:82.0 万元
- 项目类别:面上项目
SARA产生的内源性LPS对乳腺上皮细胞增殖和凋亡的影响
- 批准号:31470120
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:面上项目
SARA产生的内源性LPS对结肠黏膜上皮细胞凋亡的影响及GCs的参与
- 批准号:31272470
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
亚急性瘤胃酸中毒对瘤胃上皮生长与屏障功能的影响研究
- 批准号:31101739
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
- 批准号:
10656829 - 财政年份:2023
- 资助金额:
$ 54.61万 - 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
- 批准号:
10592000 - 财政年份:2023
- 资助金额:
$ 54.61万 - 项目类别:
Noninvasive Vagus Nerve Stimulation for Treatment of Brain Injury (nVNS-TBI) in Rats
无创迷走神经刺激治疗大鼠脑损伤 (nVNS-TBI)
- 批准号:
10575817 - 财政年份:2022
- 资助金额:
$ 54.61万 - 项目类别:
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
- 批准号:
10512056 - 财政年份:2021
- 资助金额:
$ 54.61万 - 项目类别:
Opioid-induced potentiation of the exercise pressor reflex via acid-sensing ion channels (ASIC3) in health and simulated peripheral artery disease
阿片类药物通过酸敏感离子通道 (ASIC3) 在健康和模拟外周动脉疾病中诱导运动升压反射增强
- 批准号:
10593184 - 财政年份:2021
- 资助金额:
$ 54.61万 - 项目类别: