Digital Monitoring of Impulsivity as a Proximal Risk Factor for Suicidal Outcomes
冲动作为自杀结果的近端风险因素的数字监测
基本信息
- 批准号:10642521
- 负责人:
- 金额:$ 19.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAdultAffectAwardBehaviorBehavioralBiological MarkersCause of DeathClinicalDataData AnalysesData SetDecision MakingDetectionDevelopmentDiagnosticDistalEcological momentary assessmentElementsEnvironmentFatigueFeeling hopelessFeeling suicidalFundingFutureGeneral HospitalsGoalsGrainHospitalizationImpulsive BehaviorImpulsivityIndividualInterventionInvestigationJordanKnowledgeLeftLifeLinkMachine LearningManuscriptsMapsMassachusettsMeasuresMentorsMentorshipMethodsModelingNational Institute of Mental HealthOutcomeParticipantPatient MonitoringPatient Self-ReportPatientsPatternPhenotypePositioning AttributePredictive AnalyticsPreventionProcessPsychiatric therapeutic procedurePsychiatryPublic HealthPublishingResearchResearch PriorityResearch ProposalsResourcesRiskRisk FactorsSamplingScienceSleep DeprivationStatistical ModelsSubgroupSuicideSuicide attemptSuicide preventionTelephoneTestingTimeTrainingWorkcareer developmentclinical decision-makingdigitaldigital monitoringexperiencegerminehigh riskimprovedinferential statisticsmedical schoolsmobile computingmultidisciplinarymultimodalitynetwork modelsnovelprogramsreal time monitoringscreeningskillssuicidalsuicidal behaviorsuicidal risktherapy developmenttime intervaltraittrait impulsivity
项目摘要
Background: Suicide is a leading cause of death, but progress in suicide prevention has been slowed by
critical gaps in knowledge about predictors of imminent risk. Impulsivity is an ideal candidate for a proximal risk
factor: it is a known transdiagnostic distal risk factor, it fluctuates over time within individuals, and it is a
modifiable target for intervention. Existing suicide research, however, has not examined multiple components
of real-time, state impulsivity over high-risk periods — a necessary step to test (a) whether impulsivity reduces
ability to resist suicidal urges in real time, (b) which components of this multi-faceted construct are associated
with suicide risk and when, and (c) whether patterns differ for individuals or subgroups. Research: We propose
a fine-grained, intensive longitudinal investigation of associations between components of impulsivity and
suicidal urges in two samples at high risk for suicide. Aim 1 will involve secondary data analysis of a digital
monitoring study of individuals presenting to an emergency department with suicidal thoughts to analyze real-
time associations between impulsivity, suicidal urges, and ability to resist suicidal urges. We will test whether
state impulsivity is predictive beyond the effect of trait impulsivity. In Aim 2, we will conduct a digital monitoring
study of 140 individuals hospitalized for suicidal thoughts to assess multiple components of state impulsivity
using self-report, mobile tasks, and passive phone data, and we will test specific associations with suicidal
urges and ability to resist them in real time. In Aim 3, we will compare group-level, subgroup-level, and
personalized models of these data using a combination of inferential statistics (network modeling) and
predictive analytics (machine learning). This work will allow us to dramatically improve understanding of a key
transdiagnostic process, laying the groundwork for development of detection and intervention strategies
targeted at specific elements of impulsivity at an optimal timescale. Candidate’s Career Development, Goals,
and Environment: This proposal’s research aims and the candidate’s career development will be supported
by the many resources available at Massachusetts General Hospital/Harvard Medical School as well as formal
training and mentorship in (T1) digital monitoring of patients at high risk for suicide, (T2) advanced multivariate
longitudinal data analysis, (T3) digital phenotyping, and (T4) preparing for an intervention-focused R01
submission. The mentorship team includes Mentor Dr. Jordan Smoller, leading expert in precision psychiatry
and predictive analytics; Co-Mentors Dr. Matthew Nock, leader in the study of suicide; and Dr. Evan Kleiman,
expert in real-time monitoring and digital phenotyping of suicidal states; and Consultants Dr. Aidan Wright,
expert in multilevel and personalized statistical modeling; Dr. JP Onnela, leader in digital phenotyping and
statistical network science; and Dr. Laura Germine, pioneer in mobile task assessment. This award will provide
the candidate with advanced training and skills necessary to launch an independent research program focused
on using mobile technology to advance understanding of impulsive decision-making and suicide.
背景:自杀是死亡的主要原因,但预防自杀的进展已被放缓
关于迫在眉睫的风险预测因素的知识差距是近端风险的理想选择
因素:它是已知的经诊断远端风险因素,它随着个人而随着时间的流逝而波动,它是一个
但是,可修改的干预目标。
实时,高风险期间的状态冲动性 - 必要步骤测试(a)冲动性是否会降低
能够实时抵抗自杀冲动,(b)该多面构造的哪些组成部分是相关的
自杀风险以及何时以及(c)paterns对个体还是亚组有不同
对冲动性的组成部分和
自杀的两个样本中的自杀率涉及数字的辅助数据分析
监测对急诊科的个人的研究,以自杀思想来分析现实
冲动性,自杀冲动和抵抗自杀冲动的能力之间的时间关联。
国家冲动性超出了AIM 2的特征冲动的影响。
研究140个人住院的自杀念头,以评估国家冲动的多次组成部分
使用自我报告,移动任务和被动电话数据,我们将测试与自杀的特定关联
敦促和实时抵抗它们的能力。
这些数据的个性化模型,结合了下属统计(网络建模)和
预测分析(机器学习)。
经诊断过程,为开发检测和国际策略奠定了基础
针对最佳时间尺度的冲动性要素。
和环境:该提案的研究目的和候选人的职业发展将得到支持
通过马萨诸塞州综合医院/哈佛医学院的许多资源作为正式
(T1)对有自杀风险高风险的患者进行数字监控的培训和指导,(T2)高级多变量
纵向数据分析,(T3)数字表型和(T4)以相互作用为中心的R01进行
提交。
和预测分析;
自杀状态的实时监控和数字表型专家;
专家企业和个性化统计建模;
统计网络科学和移动任务评估的先驱Laura Germine博士。
具有高级培训和技能的候选人,启动独立研究计划所需的技能
关于使用移动技术来提高对冲动决策和自杀的理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validation of an ICD-code-based case definition for psychotic illness across three health systems.
跨三个卫生系统验证基于 ICD 代码的精神病病例定义。
- DOI:10.1101/2024.02.28.24303443
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Deo,AnthonyJ;Castro,VictorM;Baker,Ashley;Carroll,Devon;Gonzalez-Heydrich,Joseph;Henderson,DavidC;Holt,DaphneJ;Hook,Kimberly;Karmacharya,Rakesh;Roffman,JoshuaL;Madsen,EmilyM;Song,Eugene;Adams,WilliamG;Camacho,Luisa;Gasman
- 通讯作者:Gasman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Gwen Fortgang其他文献
Rebecca Gwen Fortgang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating Disparities in End-of-Life Care in Undocumented Hispanic Immigrants
调查无证西班牙裔移民临终关怀方面的差异
- 批准号:
10593462 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Dose escalation clinical trial of high-dose oral montelukast to inform future RCT in children with acute asthma exacerbations
大剂量口服孟鲁司特的剂量递增临床试验为哮喘急性发作儿童的未来随机对照试验提供信息
- 批准号:
10649012 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Building Social and Structural Connections for the Prevention of OUD among Youth Experiencing Homelessness: An RCT Examining Biopsychosocial Mechanisms
建立社会和结构联系以预防无家可归青年中的 OUD:一项检验生物心理社会机制的随机对照试验
- 批准号:
10775030 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别: