Bridging bench to bedside with aneurotechnology cross-development platform
通过神经技术交叉开发平台将工作台与床边桥接起来
基本信息
- 批准号:10640424
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAgeAlgorithm DesignAlgorithmsAmericanAmplifiersArchitectureBrainCapitalCaringChronicClinical ResearchCollaborationsCommunicationCommunitiesComplexComputer softwareComputersCustomDataDetectionDevelopmentDevice or Instrument DevelopmentDevicesDiseaseDrug CostsEconomic BurdenEcosystemElectrodesElectronicsElectrophysiology (science)EvaluationFeedbackFutureGoalsGrowthHealth Care CostsHuman ResourcesImplantInjuryIntellectual PropertyInterventionInvestigationInvestmentsKnowledgeLawsLiquid substanceLogicLongitudinal StudiesManufacturerMarketingMedicalMedical DeviceMissionNervous SystemNervous System TraumaNeurologicNeurologyNeurostimulation procedures of spinal cord tissueOperating SystemParkinson DiseasePatientsPersonsPharmaceutical PreparationsPharmacologic SubstancePhaseResearchResourcesRiskSensorimotor functionsServicesShapesSheepSpinalSpinal CordSpinal cord injurySystemTechnologyTelemetryTestingTextilesTherapeuticThinnessTimeTransistorsTranslationsTremorUnited States Department of Veterans AffairsUnited States Food and Drug AdministrationVertebral columnVeteransWritingbench to bedsidebioelectronicschronic paincostdata acquisitiondeep brain stimulatordensitydesignfirst-in-humanflexibilityhuman studyimplantable deviceimprovedin vivoinnovationinstrumentmanufacturemedical implantmicrochipnervous system disorderneuralneuroregulationneurotechnologynew technologynext generationnovelnovel therapeuticspharmacologicpre-clinicalpreclinical evaluationpreclinical studyprematureprogramsresearch and developmentresearch clinical testingrestorationsocioeconomicsspinal cord and brain injurysuccesstimelinetoolwireless
项目摘要
Advancements in neurotechnology are shaping the future of medical care for those suffering from neurological
illness, disease, and injury. Unfortunately, it can take decades to bring such advances from the benchtop to the
bedside in service of our Veterans. The development, evaluation, optimization, and deployment of each
subcomponent of a medical device is complex, and combinations of technologies are required to address the
complex needs of Veterans with, for example, traumatic brain and spinal cord injuries. In fact, the last major
neurotechnology translational success was arguably the deep brain stimulator (DBS) developed in the 1980’s,
delivering electrical neuromodulation to the brain to reduce Essential and Parkinson’s Disease-related tremor,
but were not approved by the Food and Drug Administration until 2002. While impressive technologies are on
the horizon, including those supported by the Department of Veterans Affairs, the time, money, and scientific
divide between benchtop successes and bedside therapeutic application is exceptionally vast. Bioelectronics
are hyped as an alternative to drug interventions, but the reality is that the translation timelines for medical
devices—and their success rates as therapeutic tools—mirror the slow and costly development of new
pharmaceuticals rather than mirroring the lean, accelerated development of new electronics for the consumer
market.
This issue matters because the socioeconomic burden of neurological injury and disorders is significant. Spinal
cord injuries (SCIs) alone are estimated to affect between 249,000 and 363,000 Americans (NSCISC), and
roughly 42,000 people with SCIs are Veterans, an estimated $5M/patient over their lifetime in health care
costs. Nearly half of all SCIs occur in people between the ages of 16 and 30, leaving many to live with the
injuries for decades. The inefficiency of bringing new drugs to market is dubbed “Eroom’s” law, given the
exponentially increasing cost of drug release—in contrast to Moore’s law, originally referring to the number of
transistors on a microchip doubling every 2 years though the cost of computers is halved, but more generally
illustrating the exponential growth for technologies over time. From a translational perspective, the efficiency of
medical device innovation still has much more in common with pharmacological research and development
(R&D) than it does with Moore’s law and consumer electronics.
We propose the development of a hardware and software accelerator platform (“cross-development”, or xDev)
for electrophysiology research and neurotechnology creation. Development of this platform would enable new
research into spinal cord stimulation for sensorimotor restoration in SCI, as well as for continued investigation
of spinal electrophysiology in closed-loop devices for chronic pain. The new tool will be used to accelerate
design, development and deployment of neurotechnology by smoothing the transition between design phases,
allowing rapid redesign and re-verification of neurotechnology components. The xDev platform maximizes the
ability of neurotechnology device developers to test their tools with versatile interfaces, algorithms, and
underlying chipsets, improving compatibility, cross-functionality, and inspiring new collaborations between
technology developers. Strategic platform organization protects neurotechnology developers’ intellectual
property, while improving modularity with tools from other manufacturers. Leveraging the xDev platform, we will
demonstrate a new neurotechnology enabling chronic recording of spinal electrophysiology and fill a
neuroscientific knowledge gap, connecting the fields of Restorative Neurology and therapeutic spinal cord
neuromodulation.
神经技术的进步正在塑造患有神经系统的人的医疗服务的未来
疾病,疾病和伤害。不幸的是,将台式的此类进步带到
床边为我们的退伍军人服务。每个人的开发,评估,优化和部署
医疗设备的子组件很复杂,需要技术的组合来解决
退伍军人的复杂需求,例如大脑创伤和脊髓损伤。实际上,最后一个专业
神经技术的转化成功可以说是在1980年代开发的深脑刺激剂(DBS),
向大脑传递电气调节以减少必需品和帕金森氏病与疾病相关的震颤,
但直到2002年才被食品药品监督管理局批准。
地平线,包括退伍军人事务部支持的时间,时间,金钱和科学
台式成功与应用床边治疗之间的划分非常广泛。生物电子学
被炒作作为药物干预措施的替代方案,但现实是医学的翻译时间表
设备以及作为治疗工具的成功率 - 肯定新的新发展
药品而不是镜像消费者的瘦弱,加速的新电子开发
市场。
这个问题很重要,因为神经损伤和疾病的社会经济伯恩伯恩很重要。脊
据估计,仅绳索损伤(SCI)会影响249,000至363,000美国人(NSCISC),以及
大约有42,000名SCI的人是退伍军人,一生中估计有500万美元/患者的医疗保健
费用。在16至30岁之间,所有SCI的近一半都发生在
几十年来受伤。鉴于该法律,将新药物推向市场的效率低下被称为“ Eroom”法律。
指数增加药物释放成本 - 与摩尔法律相反,最初是指
微芯片上的晶体管每2年翻了一番,尽管计算机的成本减半,但更普遍地
说明了随着时间的流逝,技术的指数增长。从翻译的角度来看
医疗设备创新仍然与药品研究和开发有更多共同点
(研发)比摩尔法律和消费电子产品所做的。
我们建议开发硬件和软件加速器平台(“跨开发”或XDEV)
用于电生理研究和神经技术的创建。该平台的开发将使新
研究SCI中的感觉运动恢复的脊髓刺激以及继续投资的研究
闭环装置中的脊柱电生理学,用于慢性疼痛。新工具将用于加速
通过平滑设计阶段之间的过渡,设计,开发和部署神经技术,
允许快速重新设计和重新验证神经技术成分。 XDEV平台最大化
神经技术设备开发人员使用多功能接口,算法和
基本芯片组,提高兼容性,跨功能以及激发新的合作
技术开发人员。战略平台组织保护神经技术开发人员的智力
财产,同时使用其他制造商的工具改善模块化。利用XDEV平台,我们将
展示了一种新的神经技术,以实现脊柱电生理学的慢性记录并填充
神经科学知识差距,连接恢复性神经病学和治疗性脊髓的领域
神经调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Allenson Borton其他文献
David Allenson Borton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Allenson Borton', 18)}}的其他基金
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
- 批准号:
10630949 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
- 批准号:
10448954 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10205394 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10470025 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10689290 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
- 批准号:
10238761 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Large Scale Cortical Laminar Recordings: Novel Instrumentation
大规模皮质层流记录:新颖的仪器
- 批准号:
10078368 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10305343 - 财政年份:2018
- 资助金额:
-- - 项目类别:
The Role of M1 Leg Area in Volitional and Stereotyped Control of the Lower Limb
M1 腿部区域在下肢意志和刻板控制中的作用
- 批准号:
10021472 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
- 批准号:
10267899 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
-- - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Promoting Caregiver Implementation of an Effective Early Learning Intervention
促进看护者实施有效的早期学习干预
- 批准号:
10636211 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
-- - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
-- - 项目类别: