Center for Advanced Imaging Innovation and Research (CAI2R)

先进成像创新与研究中心 (CAI2R)

基本信息

项目摘要

Overall Project Summary The Center for Advanced Imaging Innovation and Research (CAI2R) pursues a mission of bringing people together to create new ways of seeing. The work of our Center has been focused on creating new paradigms for the acquisition, reconstruction, and interpretation of biomedical images, and on implementing new collaboration models in order to translate these developments rapidly into clinical practice. The world of biomedical imaging is changing, and CAI2R has been at the forefront of that change. Tasks that were once the sole domain of meticulously-engineered imaging hardware are now beginning to be accomplished in software, increasingly informed by diverse arrays of inexpensive auxiliary sensors. Information once pursued through the laborious acquisition of carefully separated image datasets is now being derived from newly integrated, and richly quantitative, data streams. In keeping with these themes, our Center will be organized around the following four Technology Research and Development (TR&D) projects going forward: 1. Reimagining the Future of Scanning: Intelligent image acquisition, reconstruction, and analysis. 2. Unshackling the Scanners of the Future: Flexible, self-correcting, multisensor machines. 3. Enriching the Data Stream: MRI and PET in concert. 4. Revealing Microstructure: Biophysical modeling and validation for discovery and clinical care. In each of these projects, we aim to push medical imaging technology to the next level, both in hardware and in software. Having made great strides in developing rapid, continuous imaging data streams, we will next aim to add key new information to those streams, both from physics-driven microstructural modeling and from data- driven machine learning. Having focused on the development of robust tools for image acquisition and reconstruction, we will extend the pipeline to image interpretation, using the results of human- or machine- derived evaluations of image content as feedback for the further improvement of acquisition strategies and sensor designs. We will also aim to close the loop between diagnostic sensing and therapeutic intervention, exploring new ways to guide therapy with continuously-acquired information about tissue bioeffects. Our Center has an explicit translational focus, which is reflected in the day-to-day operation of TR&D projects as well as in the topics of Collaborative Projects (CPs) and Service Projects (SPs), which are focused on three general areas of high public health impact: cancer, musculoskeletal disease, and neurologic disease. In keeping with this translational emphasis, CAI2R is also be driven by an embedded collaboration model in which basic scientists, clinicians, and industry developers sit down together regularly at the scanners for interactive technology development and assessment. With early involvement of clinical stakeholders and industry partners, we aim to make CAI2R technologies widely available, for the advancement of biomedical knowledge and for the benefit of patients and the physicians who care for them.
总体项目摘要 高级成像创新与研究中心(CAI2R)追求带人的使命 共同创建新的观察方式。我们中心的工作一直致力于创建新的范式 为了获得,重建和解释生物医学图像,并实施新的 为了将这些发展迅速转化为临床实践,协作模型。 生物医学成像的世界正在发生变化,CAI2R一直处于这种变化的最前沿。任务 曾经是精心设计成像硬件的唯一领域 在软件中,越来越多地由各种廉价辅助传感器阵列告知。一旦寻求信息 通过艰苦的获取精心分离的图像数据集,现在是从新的 集成且丰富的数据流。为了与这些主题保持一致,我们的中心将组织起来 围绕以下四个技术研发(TR&D)项目的发展: 1。重新想象扫描的未来:智能图像获取,重建和分析。 2。解开未来的扫描仪:灵活,自我校正的多传感器机器。 3。丰富数据流:MRI和PET音乐会。 4。揭示微观结构:发现和临床护理的生物物理建模和验证。 在这些项目中,我们的目标是将医学成像技术推向一个新的水平,无论是在硬件还是 在软件中。在开发快速,连续成像数据流方面取得了长足的进步,我们将下一个目标 从物理驱动的微结构建模和数据 - 驱动的机器学习。专注于开发可靠的图像获取工具和 重建,我们将使用人类或机器的结果将管道扩展到图像解释 对图像内容的评估是进一步改善采集策略的反馈和 传感器设计。我们还将旨在关闭诊断感和治疗干预之间的循环, 探索有关组织生物效应的连续信息的新方法来指导治疗。 我们的中心具有明确的翻译重点,这反映在TR&D项目的日常运营中 以及协作项目(CPS)和服务项目(SPS)的主题,该项目专注于三个 高公共卫生影响的一般领域:癌症,肌肉骨骼疾病和神经系统疾病。 为了保持这种翻译的重点,CAI2R也受到嵌入式协作模型的驱动 哪些基础科学家,临床医生和行业开发人员会定期在扫描仪上一起坐下 交互式技术开发和评估。随着临床利益相关者和 行业合作伙伴,我们旨在使CAI2R技术广泛使用,以促进生物医学的发展 知识和为照顾他们的医生的利益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel K Sodickson其他文献

Utility of rapid prototyping in Complex DORV: does it alter management decisions?
  • DOI:
    10.1186/1532-429x-18-s1-p175
  • 发表时间:
    2016-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    Puneet Bhatla;Sujata Chakravarti;Larry A Latson;Daniel K Sodickson;Ralph S Mosca;Nicole Wake
  • 通讯作者:
    Nicole Wake
Whole heart self-navigated 3D radial MRI for the creation of virtual 3D models in congenital heart disease
  • DOI:
    10.1186/1532-429x-18-s1-p185
  • 发表时间:
    2016-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    Nicole Wake;Li Feng;Davide Piccini;Larry A Latson;Ralph S Mosca;Daniel K Sodickson;Puneet Bhatla
  • 通讯作者:
    Puneet Bhatla
Synchronized cardiac and respiratory sparsity for rapid free-breathing cardiac cine MRI
  • DOI:
    10.1186/1532-429x-16-s1-w26
  • 发表时间:
    2014-01-16
  • 期刊:
  • 影响因子:
  • 作者:
    Li Feng;Leon Axel;Jian Xu;Daniel K Sodickson;Ricardo Otazo
  • 通讯作者:
    Ricardo Otazo
Free-breathing 3D whole-heart coronary mra using respiratory motion-resolved sparse reconstruction
  • DOI:
    10.1186/1532-429x-18-s1-o105
  • 发表时间:
    2016-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    Davide Piccini;Li Feng;Gabriele Bonanno;Simone Coppo;Jérôme Yerly;Ruth P Lim;Juerg Schwitter;Daniel K Sodickson;Ricardo Otazo;Matthias Stuber
  • 通讯作者:
    Matthias Stuber

Daniel K Sodickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel K Sodickson', 18)}}的其他基金

Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    10167922
  • 财政年份:
    2020
  • 资助金额:
    $ 119.89万
  • 项目类别:
CAI2R Administration
CAI2R 管理
  • 批准号:
    9804439
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    9804438
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    10701713
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    8932685
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    8794070
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
CAI2R Administration
CAI2R 管理
  • 批准号:
    10701714
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    10246945
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
CAI2R Administration
CAI2R 管理
  • 批准号:
    10246946
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:
Center for Advanced Imaging Innovation and Research (CAI2R)
先进成像创新与研究中心 (CAI2R)
  • 批准号:
    9110718
  • 财政年份:
    2014
  • 资助金额:
    $ 119.89万
  • 项目类别:

相似国自然基金

跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
  • 批准号:
    72373114
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
  • 批准号:
    72373068
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
  • 批准号:
    72364037
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
  • 批准号:
    82360345
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
  • 批准号:
    10593480
  • 财政年份:
    2023
  • 资助金额:
    $ 119.89万
  • 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    $ 119.89万
  • 项目类别:
Achieving Model Fairness on Automatic Primary Open-angle Glaucoma Screening
实现自动原发性开角型青光眼筛查的模型公平性
  • 批准号:
    10726928
  • 财政年份:
    2023
  • 资助金额:
    $ 119.89万
  • 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    $ 119.89万
  • 项目类别:
BPCA INNOVATIVE TRIAL DESIGNS AND ASSAY DEVELOPMENTS IN PEDIATRIC THERAPEUTICS
BPCA 儿科治疗的创新试验设计和检测开发
  • 批准号:
    10936040
  • 财政年份:
    2023
  • 资助金额:
    $ 119.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了