Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
基本信息
- 批准号:10454109
- 负责人:
- 金额:$ 34.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:BackBindingBiological AssayBiophysical ProcessCaveolaeCaveolinsCell Signaling ProcessCell membraneCell physiologyCellsCellular biologyChemicalsCholesterolCholesterol HomeostasisClosure by clampCommunicationCuesDataDevicesDiseaseExposure toFRAP1 geneFeedsFluorescenceFluorescence Resonance Energy TransferFoundationsGrowth FactorLeadLinkMeasurementMeasuresMembraneMethodsPathologyPerfusionPhosphorylationPhysiologicalPlasma CellsPositioning AttributeRegulationResolutionRestScaffolding ProteinSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSiteTechniquesTertiary Protein StructureTestingTimecaveolin 1cholesterol controldehydroergosterolexperimental studyextracellularflotillininhibitormTOR Signaling Pathwaymembrane activitynoveloptogeneticsrestorationscaffoldsensor
项目摘要
Abstract
Understanding mechanisms cells use to maintain cholesterol homeostasis are critical in cell biology and many
diseases. To achieve this, the chemical activity of cholesterol in cell plasma membranes must be measured
because activity controls cholesterol’s effects on cellular processes. To date, plasma membrane cholesterol
concentration has been used to quantify cholesterol activity. But the activity of cholesterol is determined by its
chemical potential; concentration contributes to, but does not accurately reflect membrane activity. Because a
method to measure cholesterol chemical potential had not been available, it was not possible to properly
evaluate many of cholesterol’s effects, including those on cellular signaling. We have now developed methods
to do so. These methods and a new perfusion fluorimetry apparatus we have devised allow us to follow the
chemical potential of cholesterol of plasma membranes in real time. We have discovered that cells quickly
respond to changes in extracellular cholesterol by adjusting the cholesterol chemical potential of their plasma
membranes without changing the total content of cellular cholesterol. This finding reveals a previously unknown
mechanism to maintain cholesterol homeostasis: quick adjustment of plasma membrane chemical potentials
to control cholesterol influx and efflux. We have identified protein scaffolded domains, as typified by caveolae,
as sites at which cells sense and rapidly respond to external cholesterol. The abundance and total amount of
cholesterol that resides in caveolae are determined by the extent of phosphorylation at position Ser80 of
caveolin-1, the foundational protein of the domain. The shuttling of cholesterol between scaffolded domains
and the surround which must result upon Ser80 phosphorylation alters cholesterol chemical potential. We
therefore hypothesize that signaling cascades initiated within scaffolded domains are responsible for
maintaining cholesterol homeostasis when cells are subjected to changes in external cholesterol and to growth
factors. We further posit that these activated signaling cascades feed back to the plasma membrane to maintain
chemical potentials. Cells will be stimulated with growth factors and relevant signaling cascades will be
identified. The abundance of caveolae will be assessed by measuring the FRET (fluorescence resonance energy
transfer) signals between caveolins. Our preliminary evidence strongly implicates that growth factors and/or
changes in the level of external cholesterol stimulate the PI3K/Akt/mTOR signaling pathway that feeds back to
achieve cholesterol homeostasis. Optogenetic techniques will be used to determine whether it and/or others are
indeed responsible for control of cholesterol. Parallel experiments using the same strategies will determine if
flotillins, analogous to caveolin, also serve as sensors/regulators of cholesterol chemical potentials.
抽象的
了解细胞用于维持胆固醇稳态的机制在细胞生物学中至关重要,许多
为了实现这一目标,必须测量胆固醇的化学活性
由于活性控制胆固醇对细胞过程的影响。
浓度已用于量化胆固醇活性。
化学潜力;
测量胆固醇化学潜力潜力的方法尚无可用,因此无法正确
评估许多胆固醇的作用,包括我们现在开发的方法。
这样做。
质膜的化学潜力实时发现细胞很快
通过调节血浆的胆固醇化学潜力来应对细胞外胆固醇的变化
膜改变了细胞胆固醇的总含量。
维持胆固醇稳态的机制:快速调整质量惊奇电势
为了控制胆固醇的流入和外排。
如细胞感知外部胆固醇的位置。
居住在口腔中的胆固醇取决于phosporition在Ser80的phosporition的程度
Caveolin-1,结构域的基础蛋白。
必须在Ser80磷酸化时导致的周围改变Chesterol化学势
因此,假设胸肌施舍胸肌施舍施舍施舍施施施施施施施施施施施施刺脚脚架脚手架脚轮造成的领域是负责的
当细胞受到外部胆固醇的变化并生长时,保持胆固醇稳态
我们进一步认为,激活的信号级联反馈到质膜
化学电位将被生长因子刺激,相关信号级联
鉴定出来的小窝的丰度将通过测量fret(荧光共振能量)进行评估
Caveolins之间的转移信号。
外部胆固醇刺激水平的变化PI3K/AKT/MTOR信号传导途径,该途径回到
实现胆固醇稳态。
确实可以使用相同的策略来控制胆固醇。
类似于小窝蛋白的植物素也是胆固醇化学势的传感器/常规者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDRIC S COHEN其他文献
FREDRIC S COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDRIC S COHEN', 18)}}的其他基金
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10624260 - 财政年份:2021
- 资助金额:
$ 34.7万 - 项目类别:
Biophysical Mechanisms of Cholesterol Homeostasis
胆固醇稳态的生物物理机制
- 批准号:
10117604 - 财政年份:2021
- 资助金额:
$ 34.7万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8824948 - 财政年份:2013
- 资助金额:
$ 34.7万 - 项目类别:
Molecular Regulation of Fusion: Voltage Dependence and Local Physical Interaction
聚变的分子调控:电压依赖性和局部物理相互作用
- 批准号:
8432279 - 财政年份:2013
- 资助金额:
$ 34.7万 - 项目类别:
相似国自然基金
三链肽核酸分子信标结合纳米孔传感器用于生物标志物的同时检测研究
- 批准号:21904129
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
烈性噬菌体结合生物膜干涉技术的单增李斯特菌实时无标记快速检测
- 批准号:31701713
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型非标记位点可控型功能DNA荧光传感器的开发及在环境检测和生物分析中的应用
- 批准号:21775084
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
结合微流控和磁性分离技术的肺癌标志物SERS生物芯片研究
- 批准号:61302027
- 批准年份:2013
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
可视化试纸条结合高灵敏度生物发光测序定量检测转基因生物的研究
- 批准号:21005088
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 34.7万 - 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
- 批准号:
10646999 - 财政年份:2023
- 资助金额:
$ 34.7万 - 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
- 批准号:
10820331 - 财政年份:2023
- 资助金额:
$ 34.7万 - 项目类别:
High throughput screening and drug discovery for antagonists of the Ebola VP40 protein assembly
埃博拉 VP40 蛋白组装拮抗剂的高通量筛选和药物发现
- 批准号:
10760573 - 财政年份:2023
- 资助金额:
$ 34.7万 - 项目类别:
ELAVL1 role in glioblastoma heterogeneity through intercellular gene transfer mediated by cell fusion and tunneling membrane nanotube formation
ELAVL1通过细胞融合和隧道膜纳米管形成介导的细胞间基因转移在胶质母细胞瘤异质性中的作用
- 批准号:
10658226 - 财政年份:2023
- 资助金额:
$ 34.7万 - 项目类别: