Differentiation in Yeast: Mechanisms of Mating and Meiosis
酵母的分化:交配和减数分裂的机制
基本信息
- 批准号:10458640
- 负责人:
- 金额:$ 39.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenineAneuploidyAnimal ModelAnimalsBiologicalCell WallCell fusionCell membraneCell physiologyCellsCellular biologyComplexDefectDegradation PathwayDevelopmentDiploidyDiseaseDisseminated Malignant NeoplasmEukaryotic CellExtracellular MatrixFertilizationGenesGenetic ScreeningGenetic TranscriptionGerm CellsGiant CellsGoalsHaploidyHealthHomologous GeneHumanLeadMediatingMeiosisMembraneMembrane FusionMessenger RNAMethylationMethyltransferaseMitosisModificationMolecularMusMyoblastsNuclear EnvelopeNuclear FusionOrganismPartner in relationshipPathologicPathway interactionsPlantsProcessProteinsRegulationResearchRoleSaccharomyces cerevisiaeSaccharomycetalesSexual ReproductionSignal TransductionSomatic CellSterilityTestingTissuesTranscriptional RegulationTranslational RegulationViralYeastsfungusmuscle formnovelprotein degradationzygote
项目摘要
Eukaryotic cells fuse during fertilization to produce diploid zygotes that go on to differentiate into specialized
cells during development. Somatic cell fusion also occurs during development to produce multinucleate
tissues, such as myoblast fusion to form muscle. Diploid organisms may then undergo meiosis to produce
haploid gametes for subsequent fertilization, completing the cycle of sexual reproduction. Cell fusion and
meiosis must be tightly regulated. Inappropriate cell fusion, as occurs in some virally-infected cells and
metastatic cancers, results in pathological syncytia. Despite advances in elucidating the process of cell fusion,
much remains unknown. Meiotic defects may cause aneuploidy, or even sterility. Recent research revealed
that meiotic regulation is surprisingly complex. Overlaid on waves of transcriptional regulation are complex
layers of mRNA modification and translational regulation which are thought to provide exquisite temporal
control. However, much remains to be learned about how meiosis is regulated. The long-term goals of the
research in my lab are to understand the fundamental, conserved molecular mechanisms of cell fusion, nuclear
fusion, and meiotic regulation using one of the most powerful model organisms, the budding yeast
Saccharomyces cerevisiae. During yeast mating and somatic cell fusion, cells must signal that they are in
contact and competent to fuse, remove the extracellular matrix separating them, and fuse the plasma
membranes. Each step is only poorly understood. We have shown that in yeast, as in mouse myoblasts,
Cdc42p is a key regulator of cell fusion. We will address how cell contact regulates Cdc42p and how Cdc42p in
turn mediates cell fusion, focusing on membrane curvature and the cell wall integrity pathway. Using a novel
genetic screen, we will pursue identification of the yeast membrane fusogen. After mating and cell fusion,
many induced proteins may be hazardous and must be rapidly degraded. We discovered that Srl4p stabilizes
mating-induced proteins by inhibiting a branch of the proteasomal degradation pathway. We will examine how
Srl4p differentially regulates the turnover of proteins in mating and mitosis. After fertilization in many
organisms, the pronuclei fuse. Nuclear fusion is a challenging biological problem – how do the two membranes
fuse sequentially and in register? We identified Kar5p, a protein conserved in plants, animals, and fungi, as
mediating nuclear envelope fusion; however, its precise role is unknown. We will test our hypothesis that Kar5p
acts as a novel inner nuclear envelope fusogen. In meiosis, mRNA N6-adenine methylation has been revealed
to be a critical regulator, although its functions are not yet understood. Kar4p is the yeast homologue of human
METTL14, a core component of the methyl-transferase. Surprisingly, we found that Kar4p regulates both
meiotic transcription and meiotic protein levels. We will examine how Kar4p regulates meiosis at multiple
levels, testing potential roles in transcription, translational regulation, and mRNA modification. Our studies will
aid the understanding of basic conserved mechanisms of cell fusion, nuclear membrane fusion, and meiosis.
真核细胞在受精过程中融合产生二倍体受精卵,并继续分化为特化的受精卵
体细胞在发育过程中也会发生融合,产生多核。
组织,例如成肌细胞融合形成肌肉,然后可以经历减数分裂以产生肌肉。
单倍体配子用于随后的受精,完成有性生殖的周期和细胞融合。
减数分裂必须受到严格调控,如某些病毒感染的细胞中发生的那样。
尽管在阐明细胞融合过程方面取得了进展,但转移性癌症会导致病理性合胞体。
最近的研究表明,减数分裂缺陷可能会导致非整倍体,甚至不育。
减数分裂调控非常复杂,叠加在转录调控波上也很复杂。
mRNA 修饰和翻译调控层被认为提供了精致的时间
然而,关于减数分裂的长期目标还有待了解。
我实验室的研究是了解细胞融合、核细胞融合的基本、保守的分子机制。
使用最强大的模型生物之一——芽殖酵母进行融合和减数分裂调节
在酵母交配和体细胞融合过程中,细胞必须发出信号表明它们处于酵母交配状态。
接触并能够融合,去除分隔它们的细胞外基质,并融合血浆
我们对酵母细胞和小鼠成肌细胞中的每个步骤都知之甚少。
Cdc42p 是细胞融合的关键调节因子,我们将讨论细胞接触如何调节 Cdc42p 以及 Cdc42p 如何参与细胞融合。
转介导细胞融合,重点关注膜曲率和细胞壁完整性途径。
遗传筛选,我们将在交配和细胞融合后进行酵母膜融合剂的鉴定。
许多诱导蛋白可能是危险的,必须快速降解。我们发现 Srl4p 可以稳定下来。
我们将研究如何通过抑制蛋白酶体降解途径的一个分支来产生交配诱导的蛋白质。
Srl4p 在许多受精后对交配和有丝分裂中的蛋白质周转进行差异性调节。
生物体中,原核融合是一个具有挑战性的生物学问题——两个膜如何融合。
我们鉴定出 Kar5p,一种在植物、动物和真菌中保守的蛋白质,
介导核膜融合;然而,我们将检验我们的假设:Kar5p。
在减数分裂中,mRNA N6-腺嘌呤甲基化已被揭示。
尽管 Kar4p 是人类酵母同源物,但其功能尚不清楚。
令人惊讶的是,METTL14 是甲基转移酶的核心成分,我们发现 Kar4p 可以调节这两种酶。
我们将研究 Kar4p 如何在多个减数分裂中调节减数分裂。
水平,测试在转录、翻译调控和 mRNA 修饰中的潜在作用。
帮助理解细胞融合、核膜融合和减数分裂的基本保守机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark David Rose其他文献
Mark David Rose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark David Rose', 18)}}的其他基金
Differentiation in Yeast: Mechanisms of Mating and Meiosis
酵母的分化:交配和减数分裂的机制
- 批准号:
10227983 - 财政年份:2018
- 资助金额:
$ 39.86万 - 项目类别:
ZEISS LSM 510 META CONFOCAL MICROSOPE: CELL & MOLECULAR BIOLOGY
ZEISS LSM 510 META 共焦显微镜:细胞
- 批准号:
7335231 - 财政年份:2006
- 资助金额:
$ 39.86万 - 项目类别:
ZEISS LSM 510 META CONFOCAL MICROSOPE: HERPES VIRUS
ZEISS LSM 510 META 共焦显微镜:疱疹病毒
- 批准号:
7335229 - 财政年份:2006
- 资助金额:
$ 39.86万 - 项目类别:
Zeiss LSM 510 Meta Confocal Microsope
Zeiss LSM 510 Meta 共焦显微镜
- 批准号:
7046637 - 财政年份:2006
- 资助金额:
$ 39.86万 - 项目类别:
ZEISS LSM 510 META CONFOCAL MICROSOPE: CANCER
ZEISS LSM 510 META 共焦显微镜:癌症
- 批准号:
7335230 - 财政年份:2006
- 资助金额:
$ 39.86万 - 项目类别:
A DECONVOLUTION MICROSCOPE FOR CELL BIOLOGICAL RESEARCH
用于细胞生物学研究的解卷积显微镜
- 批准号:
6291344 - 财政年份:2001
- 资助金额:
$ 39.86万 - 项目类别:
GENETICS OF THE YEAST MICROTUBULE ORGANIZING CENTER
酵母微管组织中心的遗传学
- 批准号:
2191585 - 财政年份:1995
- 资助金额:
$ 39.86万 - 项目类别:
GENETICS OF CENTRIN AND THE SPINDLE POLE BODY IN YEAST
酵母中心蛋白和纺锤体的遗传学
- 批准号:
6519646 - 财政年份:1995
- 资助金额:
$ 39.86万 - 项目类别:
GENETICS OF THE YEAST MICROTUBULE ORGANIZING CENTER
酵母微管组织中心的遗传学
- 批准号:
2191586 - 财政年份:1995
- 资助金额:
$ 39.86万 - 项目类别:
相似国自然基金
烟酰胺腺嘌呤二核苷酸从头合成新途径的发现与解析
- 批准号:32370058
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新一代精准、安全、适用范围更广的腺嘌呤碱基编辑器的开发及其在基因治疗中的应用研究
- 批准号:32371535
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
N6-腺嘌呤甲基化修饰调控玉米抗旱性的分子机制研究
- 批准号:32370633
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新型脂质多聚复合物的腺嘌呤碱基编辑系统对高草酸尿症的基因治疗研究
- 批准号:52373134
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
超亲和识别体的人工进化与全基因DNA/RNA腺嘌呤甲基化测序新方法
- 批准号:22234008
- 批准年份:2022
- 资助金额:280 万元
- 项目类别:重点项目
相似海外基金
Differentiation in Yeast: Mechanisms of Mating and Meiosis
酵母的分化:交配和减数分裂的机制
- 批准号:
10227983 - 财政年份:2018
- 资助金额:
$ 39.86万 - 项目类别: