Molecular Signal Integration for Root Growth Control
用于根生长控制的分子信号集成
基本信息
- 批准号:10459320
- 负责人:
- 金额:$ 40.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesArabidopsisAreaBindingBiochemistryBiological ModelsCellsComplexConflict (Psychology)CuesDataDiseaseEventFlagellinGenesGeneticGenetic VariationGenetic studyGenomicsGenotypeGrowthGrowth and Development functionHealthIndividualIronLeadLongevityMalignant NeoplasmsMammalsMeasuresMediatingMicroscopyModelingMolecularMonitorMononuclearMouse-ear CressNutrientOrganOrganismOther GeneticsPathway interactionsPatientsPatternPerceptionPhenotypePhosphorylationPhosphotransferasesPlant ModelPlant RootsPlantsProcessProtein KinaseProteinsQuinateRegulationRegulatory PathwayResearchSignal TransductionSoilStructureSystemTestingTimeTissuesVariantWaterbasecell growthcell typedefense responsedesignexperimental studyextracellularfitnessgenetic approachgenetic variantgenome wide association studyinsightmembermicrobialmutantnon-invasive imagingorgan growthpathogenpersonalized medicinephenomicsprotein protein interactionpublic health relevancereceptorresponse
项目摘要
Abstract
Multicellular organisms must precisely control the growth and size of tissues and organs. For this, cells
reproducibly and accurately interpret information conveyed by extrinsic signals and perceived by a large array
of sensing machinery. Malfunction of these growth-regulatory pathways decreases organismal fitness and can
lead to diseases like cancer. While several major pathways controlling organ and tissue growth have been well
characterized, there are two very important areas that are not well understood. First, how are multiple, often
conflicting growth regulatory extrinsic signals integrated to impact growth? Second, how does natural genetic
variation impact these growth pathways and their responses to extrinsic signals?
The root of the model plant Arabidopsis thaliana is ideal for studying the genetic and molecular bases for how
organ growth is adjusted based on multiple signals, and how these responses are modulated by genotype. This
is because plants, in particular their root systems, have evolved mechanisms for tightly coordinating all aspects
of growth and development to environmental conditions. Moreover, it is possible to efficiently and quantitatively
monitor root growth over long periods of time without sacrificing the organism (as is the case for mammals).
Moreover, it is possible to monitor thousands of plants in parallel, enabling large-scale genetic approaches for
assessing multiple environmental conditions. To date, 1135 isogenic strains of Arabidopsis have been fully
sequenced and many of these strains respond in distinct ways to environmental signals, providing a platform for
phenomics and genome-wide association studies to identify gene variants responsible for these contrasting
growth responses. Taken together, the Arabidopsis root is a unique system for studying how organ growth is
coordinated to multiple environmental signals, and how this coordination is modulated by genotype.
It has recently been shown that root growth responses to low iron levels are largely determined by natural genetic
variation within a group of receptor kinases and a protein kinase. At least two of these genes are also involved
in responses to flagellin, a pathogen associated molecular pattern. Based on these data, a model has been
formulated that this receptor kinase "module" integrates iron and defense cues (which promote and inhibit
growth, respectively) to regulate root growth. In this proposal, experiments will test the hypotheses that protein-
protein interactions and their dynamics within this receptor kinase module modulate root growth in response to
iron and flagellin (Aim 1), and that allelic variation in the receptor kinase module determines growth sensitivities
to iron and microbial signals, as well as the integration of these signals (Aim 2). Finally, mechanistic studies will
be performed to determine the molecular processes by which root growth is regulated in response to iron levels
(Aim 3). Overall, this project will provide insights into how multiple signals are integrated to regulate organ growth,
and how each individual's genotype modulates this process.
抽象的
多细胞生物必须精确控制组织和器官的生长和大小。为此,细胞
可重复且准确地解释由外部信号传递并由大型阵列感知的信息
传感机械。这些生长调节途径的故障会降低有机体的适应性,并可能
导致癌症等疾病。虽然控制器官和组织生长的几个主要途径已得到很好的证实
就其特征而言,有两个非常重要的领域尚未得到很好的理解。首先,如何经常出现多个
相互冲突的增长监管外在信号是否会综合影响增长?二、自然遗传如何
变异会影响这些生长途径及其对外部信号的反应吗?
模式植物拟南芥的根是研究遗传和分子基础的理想选择。
器官生长根据多种信号进行调整,以及这些反应如何受基因型调节。这
是因为植物,特别是它们的根系统,已经进化出了紧密协调各个方面的机制
生长发育与环境条件的关系。此外,还可以高效、定量地
长时间监测根部生长而不牺牲生物体(哺乳动物的情况就是如此)。
此外,可以并行监测数千种植物,从而实现大规模遗传方法
评估多种环境条件。迄今为止,1135个拟南芥等基因株已被完全鉴定。
测序,其中许多菌株以不同的方式响应环境信号,为
表型组学和全基因组关联研究,以确定导致这些对比的基因变异
增长反应。总而言之,拟南芥根是研究器官生长的独特系统
协调多种环境信号,以及这种协调如何通过基因型调节。
最近的研究表明,根部生长对低铁水平的反应很大程度上是由自然遗传决定的
一组受体激酶和蛋白激酶内的变异。这些基因中至少有两个也参与其中
对鞭毛蛋白(一种病原体相关分子模式)的反应。基于这些数据,建立了一个模型
公式化了这种受体激酶“模块”整合了铁和防御线索(促进和抑制
分别)来调节根系生长。在这个提案中,实验将检验蛋白质的假设
该受体激酶模块内的蛋白质相互作用及其动态调节根系生长以响应
铁和鞭毛蛋白(目标 1),受体激酶模块中的等位基因变异决定生长敏感性
铁和微生物信号,以及这些信号的整合(目标 2)。最后,机理研究将
进行以确定响应铁水平调节根生长的分子过程
(目标 3)。总体而言,该项目将深入了解如何整合多个信号来调节器官生长,
以及每个人的基因型如何调节这个过程。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The receptor kinase SRF3 coordinates iron-level and flagellin dependent defense and growth responses in plants.
- DOI:10.1038/s41467-022-32167-6
- 发表时间:2022-08-01
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Spatial IMA1 regulation restricts root iron acquisition on MAMP perception.
- DOI:10.1038/s41586-023-06891-y
- 发表时间:2024-01
- 期刊:
- 影响因子:64.8
- 作者:Min Cao;M. Platre;Huei-Hsuan Tsai;Ling Zhang;Tatsuya Nobori;Laia Armengot;Yintong Chen;Wenrong He;Lukas Brent;Núria S Coll;J. Ecker;Niko Geldner;Wolfgang Busch
- 通讯作者:Min Cao;M. Platre;Huei-Hsuan Tsai;Ling Zhang;Tatsuya Nobori;Laia Armengot;Yintong Chen;Wenrong He;Lukas Brent;Núria S Coll;J. Ecker;Niko Geldner;Wolfgang Busch
Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones
- DOI:10.1038/s41589-023-01346-x
- 发表时间:2023-06
- 期刊:
- 影响因子:14.8
- 作者:Yaowei Wang;Jessica Pérez-Sancho;M. Platre;B. Callebaut;M. Smokvarska;Karoll Ferrer;Yongming Luo;Trevor M. Nolan;Takeo Sato;Wolfgang Busch;P. Benfey;M. Kvasnica;Johan M. Winne;E. Bayer;Nemanja Vukašinović;E. Russinova
- 通讯作者:Yaowei Wang;Jessica Pérez-Sancho;M. Platre;B. Callebaut;M. Smokvarska;Karoll Ferrer;Yongming Luo;Trevor M. Nolan;Takeo Sato;Wolfgang Busch;P. Benfey;M. Kvasnica;Johan M. Winne;E. Bayer;Nemanja Vukašinović;E. Russinova
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Busch其他文献
Wolfgang Busch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Busch', 18)}}的其他基金
Molecular Signal Integration for Root Growth Control
用于根生长控制的分子信号集成
- 批准号:
10223364 - 财政年份:2018
- 资助金额:
$ 40.4万 - 项目类别:
相似国自然基金
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
- 批准号:32370325
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥SICKLE调控应激颗粒和耐热性的分子机制
- 批准号:32370324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥固醇-4α-甲基氧化酶1(SMO1)影响细胞分裂素信号传导的机制研究
- 批准号:32370271
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
组蛋白去乙酰化酶HDA19调控拟南芥铝胁迫响应的分子机制
- 批准号:32370303
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥RABG3与ATG8互作调控自噬体与液泡融合的分子机制研究
- 批准号:32370352
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Molecular Signal Integration for Root Growth Control
用于根生长控制的分子信号集成
- 批准号:
10223364 - 财政年份:2018
- 资助金额:
$ 40.4万 - 项目类别:
Coordinated regulation of floral transition by protein and long ncRNA components
蛋白质和长 ncRNA 成分对花转变的协调调控
- 批准号:
8642195 - 财政年份:2012
- 资助金额:
$ 40.4万 - 项目类别:
Coordinated regulation of floral transition by protein and long ncRNA components
蛋白质和长 ncRNA 成分对花转变的协调调控
- 批准号:
8305289 - 财政年份:2012
- 资助金额:
$ 40.4万 - 项目类别:
Coordinated regulation of floral transition by protein and long ncRNA components
蛋白质和长 ncRNA 成分对花转变的协调调控
- 批准号:
8459986 - 财政年份:2012
- 资助金额:
$ 40.4万 - 项目类别:
VERMONT COBRE: PROJECT 5: REGULATION AND EFFECTORS OF PLANT INNATE IMMUNITY
佛蒙特州 COBRE:项目 5:植物先天免疫的调节和影响因素
- 批准号:
7959820 - 财政年份:2009
- 资助金额:
$ 40.4万 - 项目类别: