Comprehensive mapping of multimodal chromatin state in single cells
单细胞多模式染色质状态的综合绘图
基本信息
- 批准号:10323270
- 负责人:
- 金额:$ 11.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological AssayBloodCategoriesCellsCellular AssayCellular biologyChromatinCodeCommunitiesComputing MethodologiesDNADNA SequenceDNA Sequence AlterationDNA-Binding ProteinsDataData AnalysesData SetDevelopmentDevelopment PlansDevelopmental ProcessDiseaseEducational workshopElementsEnhancersEnvironmentEpigenetic ProcessEtiologyFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic DiseasesGenetic Enhancer ElementGenetic FingerprintingsGenetic TranscriptionGenomeGenomicsGoalsHematopoiesisHematopoieticHistonesHomeostasisHumanHuman DevelopmentHuman GeneticsHuman GenomeJointsLeadershipLinkMachine LearningMapsMeasurementMeasuresMentorsMentorshipMethodsModelingMutationNew YorkOccupationsPatternPolycombPost-Translational Protein ProcessingProbabilityProgram DevelopmentPromoter RegionsProteinsRNA Polymerase IIRegulationRegulatory ElementResearchResearch PersonnelResolutionResourcesSignal TransductionSpecificityTechnologyTrainingTraining SupportUntranslated RNAWritingbasecareercareer developmentcausal variantcell fate specificationcell typecollaborative environmentcomputing resourcesconvolutional neural networkdeep learningepigenomicsgenetic varianthistone modificationhuman diseasehuman tissuein silicomultimodalitypromoterreconstructionresearch facilitysingle cell analysissingle-cell RNA sequencingtooltrait
项目摘要
PROJECT SUMMARY
Many non-Mendelian (polygenic) human genetic diseases involve multiple causal loci in noncoding regions of
the genome, implicating mutations in regulatory elements rather than protein-coding genes as the cause of these
diseases. Deciphering the etiology of these human genetic diseases requires an understanding of how genes
are regulated during development and homeostasis to produce functional cell states. This regulation is encoded
both through epigenetic chromatin state, and genetically encoded in the DNA sequence of regulatory elements
such as enhancers, promoters, silencers, and insulators. However, these regulatory elements and their activity
states in human cells are not resolvable with current technologies. As aberrant gene regulation likely underlies
many human diseases, understanding (1) the function of regulatory DNA elements and (2) their activity dynamics
during healthy human development are essential. To address these two problems, I propose to: (i) develop new
experimental methods to profile multimodal chromatin state in single cells; (ii) identify alterations in regulatory
element activation states that guide cell fate choice during human hematopoiesis; (iii) identify the DNA sequence
features important for regulatory element function; (iv) build community tools and resources for the analysis of
single-cell chromatin data. Together these aims will provide methods and resources for the interrogation of the
human functional genome, and the identification of regulatory state dynamics that generate human cell types.
To succeed in achieving these aims, I will pursue additional training supported by co-mentors Dr. Rahul Satija
(single-cell biology), Dr. Vijay Sankaran (hematopoiesis), Dr. Danny Reinberg (gene regulation), and Dr. David
Knowles (machine learning). I have developed a 5-year career development plan that integrates scientific training
in hematopoiesis and gene regulation, practical training and mentorship in deep learning, extensive leadership
training through courses and mentorship, and seminars and workshops on academic writing. My team of
scientific mentors will provide further guidance and mentorship in academic job searches. The New York
Genome Center is an ideal environment for research and further career development, providing the cutting-edge
research facilities and opportunities for further career development in a rich interdisciplinary environment.
Completion of the proposed research program and career development plan will launch my independent
scientific career as a leader in the field of single-cell epigenomics.
项目概要
许多非孟德尔(多基因)人类遗传病涉及非编码区域的多个致病基因座。
基因组,暗示调节元件的突变而不是蛋白质编码基因是这些的原因
疾病。破译这些人类遗传疾病的病因需要了解基因如何
在发育和稳态过程中受到调节以产生功能性细胞状态。该规定已编码
既通过表观遗传染色质状态,又通过基因编码的调控元件 DNA 序列
例如增强子、启动子、消音子和绝缘子。然而,这些监管要素及其活动
目前的技术无法解析人类细胞的状态。异常的基因调控可能是其基础
许多人类疾病,了解 (1) 调控 DNA 元件的功能和 (2) 它们的活动动态
在人类健康发展过程中至关重要。针对这两个问题,我建议:(i)开发新的
分析单细胞中多模式染色质状态的实验方法; (ii) 确定监管方面的变化
人类造血过程中指导细胞命运选择的元素激活状态; (iii) 鉴定DNA序列
对调节元件功能重要的特征; (iv) 建立社区工具和资源来分析
单细胞染色质数据。这些目标共同将为审讯嫌疑人提供方法和资源。
人类功能基因组,以及生成人类细胞类型的调节状态动态的识别。
为了成功实现这些目标,我将在共同导师 Rahul Satija 博士的支持下接受额外的培训
(单细胞生物学)、Vijay Sankaran 博士(造血)、Danny Reinberg 博士(基因调控)和 David 博士
诺尔斯(机器学习)。我制定了融合科学培训的5年职业发展计划
造血和基因调控、深度学习实践培训和指导、广泛的领导力
通过课程和指导以及学术写作研讨会和讲习班进行培训。我的团队
科学导师将为学术求职提供进一步的指导和指导。纽约
基因组中心是研究和进一步职业发展的理想环境,提供尖端的
研究设施和在丰富的跨学科环境中进一步职业发展的机会。
完成拟议的研究计划和职业发展计划将启动我的独立研究
作为单细胞表观基因组学领域的领导者的科学生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim Stuart其他文献
Tim Stuart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
- 批准号:42377456
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于微流控芯片的赤潮微藻及其生物毒素同步快速定量检测研究
- 批准号:42307568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
- 批准号:82360857
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 11.56万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 11.56万 - 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 11.56万 - 项目类别:
Molecular mechanisms regulating LMO2+ metastasis initiating cells
调节LMO2转移起始细胞的分子机制
- 批准号:
10659840 - 财政年份:2023
- 资助金额:
$ 11.56万 - 项目类别:
Cellular and Metabolic Dysfunction in Sepsis-Induced Immune Paralysis
脓毒症引起的免疫麻痹中的细胞和代谢功能障碍
- 批准号:
10724018 - 财政年份:2023
- 资助金额:
$ 11.56万 - 项目类别: