Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias
用于心律失常体外建模的生物打印人心室
基本信息
- 批准号:10325795
- 负责人:
- 金额:$ 22.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAction PotentialsAdoptionAdultAgeAnimal ModelArchitectureArrhythmiaBackBiologicalBiomechanicsBiomedical EngineeringCalciumCanis familiarisCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiotoxicityCardiovascular DiseasesCell LineCellsCollaborationsCollagenComplexContractile ProteinsDangerousnessDataDevelopmentDiseaseDisease modelDoseDrug PrescriptionsDrug TargetingElectrophysiology (science)EvaluationExtracellular MatrixFamily suidaeFibrosisFoundationsGenetic Predisposition to DiseaseGeometryHeartHeart InjuriesHeart VentricleHumanHydrogelsIn VitroIndustryIndustry StandardInfarctionIntellectual PropertyIon ChannelIschemiaLeftLeft ventricular structureLettersLinkModelingMutationMyocardiumOpticsOrganOrganoidsOryctolagus cuniculusOutcomePatientsPatternPerformancePharmaceutical PreparationsPhasePre-Clinical ModelProcessProductivityPropertyResearchRiskRisk FactorsSafetyScienceSmall Business Innovation Research GrantStructureSystemTechnologyTestingTissue EngineeringTissuesTranslatingUniversitiesVentricularWorkbasebioprintingcommercializationcostdifferential expressiondrug developmentdrug sensitivitydrug testingheart rhythmimaging platformimprovedin vitro Modelinduced pluripotent stem cellinnovationmanufacturing scale-upnext generationphase 1 testingresearch and developmentresponsesexsuccesssudden cardiac deaththree-dimensional modelingtooltreatment durationvoltage
项目摘要
Over the past 40 years nearly 45% of drugs withdrawn from the market have been due to cardiac safety
concerns, contributing to the ever increasing cost and declining productivity of the biopharma R&D process.
While the mechanisms of drug-induced cardiotoxicity vary widely by drug and target, the most common and
dangerous manifestation is cardiac arrhythmia and sudden cardiac death. The biopharma industry has heavily
invested in new tools that are sensitive to cardiotoxic effects, however, current preclinical models are a
compromise in the structural, compositional, and functional complexity necessary to recapitulate and be
predictive of human cardiac electrophysiology. Further, understanding how patient-specific risk factors including
genetic predisposition, age, sex, and underlying cardiovascular disease (e.g. fibrosis, ischemia, infarction)
contribute to a drug-induced proarrhythmogenic state requires the development of entirely new in vitro models
of impulse conduction disorders. In this proposal our objective is to develop a new bioengineered human ventricle
as a predictive in vitro model for identifying drug-induced proarrhythmogenic risks in the human heart. To
overcome current limitations, FluidForm, Inc in collaboration with Carnegie Mellon University will develop a new
freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinted left ventricle model that
recreates the laminar architecture of ventricular myocardium and has tailored structure and composition to mimic
proarrhythmogenic disease states. Our preliminary data establishes that we can build a functional ventricle with
circumferential myofiber alignment, anisotropic action potential propagation, distinct arrhythmia features
including rotors and multiple propagating waves, and complex biomechanical responses including wall
thickening. Here we will improve ventricle performance for use in the biopharma R&D process via two research
aims. First, we will establish baseline sensitivity of the FRESH 3D bioprinted human ventricle model to known
proarrhythmogenic compounds and generate industry-standard does-response curves. Second, we will
demonstrate tunable sensitivity by controlling cardiomyocyte and collagen architecture to mimic fibrotic disease
and incorporate iPS-derived human cardiomyocytes with known conduction mutations. This will allow us to
achieve patient-specific disease models that show dose-response curves that are left-shifted for
proarrhythmogenic compounds. Phase I proof-of-concept success will provide a strong foundation for a Phase
II SBIR project that will validate the complete FRESH 3D printed ventricle model in an in vitro high-content
imaging platform to assess electrophysiology and biological response, and provide a critically needed, industry-
leading capability to accurately predict human arrhythmias in drug development.
过去 40 年来,近 45% 的药物因心脏安全问题而退出市场
的担忧,导致生物制药研发过程的成本不断增加和生产力下降。
虽然药物引起的心脏毒性的机制因药物和靶标的不同而有很大差异,但最常见和最常见的是
危险的表现是心律失常和心源性猝死。生物制药行业已成为重
投资于对心脏毒性作用敏感的新工具,然而,目前的临床前模型是
在结构、组成和功能复杂性上进行妥协,以概括和概括
人类心脏电生理学的预测。此外,了解患者特定的风险因素如何包括
遗传倾向、年龄、性别和潜在的心血管疾病(例如纤维化、缺血、梗塞)
导致药物诱导的致心律失常状态需要开发全新的体外模型
的冲动传导障碍。在本提案中,我们的目标是开发一种新的生物工程人类心室
作为识别药物引起的人心脏致心律失常风险的预测体外模型。到
为了克服当前的限制,FluidForm, Inc 与卡内基梅隆大学合作将开发一种新的
自由形式可逆嵌入悬浮水凝胶 (FRESH) 3D 生物打印左心室模型
重建心室心肌的层状结构,并定制结构和成分来模仿
致心律失常疾病状态。我们的初步数据表明,我们可以构建一个功能性心室
圆周肌纤维排列、各向异性动作电位传播、独特的心律失常特征
包括转子和多个传播波,以及复杂的生物力学响应,包括壁
增稠。在这里,我们将通过两项研究来改善心室性能,用于生物制药研发过程
目标。首先,我们将建立 FRESH 3D 生物打印人类心室模型对已知的基线敏感性
致心律失常化合物并生成行业标准的剂量-反应曲线。其次,我们将
通过控制心肌细胞和胶原蛋白结构来模拟纤维化疾病,展示可调节的敏感性
并整合具有已知传导突变的 iPS 衍生的人类心肌细胞。这将使我们能够
实现患者特定的疾病模型,该模型显示左移的剂量反应曲线
致心律失常化合物。第一阶段概念验证的成功将为第二阶段奠定坚实的基础
II SBIR 项目将在体外高内涵中验证完整的 FRESH 3D 打印心室模型
成像平台,用于评估电生理学和生物反应,并提供急需的行业-
在药物开发中准确预测人类心律失常的领先能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FRESH™ 3D bioprinted cardiac tissue, a bioengineered platform for in vitro pharmacology.
- DOI:10.1063/5.0163363
- 发表时间:2023-12
- 期刊:
- 影响因子:6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Walter Feinberg其他文献
Adam Walter Feinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Walter Feinberg', 18)}}的其他基金
Advanced manufacturing of a bioprosthetic collagen heart valve
生物假体胶原蛋白心脏瓣膜的先进制造
- 批准号:
10258425 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration
ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生
- 批准号:
9924688 - 财政年份:2019
- 资助金额:
$ 22.86万 - 项目类别:
Human Myocardium Engineered Using Developmentally-Inspired Protein Scaffolds
使用受发育启发的蛋白质支架设计人类心肌
- 批准号:
8355924 - 财政年份:2012
- 资助金额:
$ 22.86万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
- 批准号:
10482182 - 财政年份:2022
- 资助金额:
$ 22.86万 - 项目类别:
Open-source computational modeling of Spinal Cord Stimulation (SCS) to enhance dissemination of 1R01NS112996
脊髓刺激 (SCS) 的开源计算模型可增强 1R01NS112996 的传播
- 批准号:
10413556 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Helping to End Addiction Long-term (HEAL): 3D Bioprinted Tissue Models
帮助戒除长期成瘾 (HEAL):3D 生物打印组织模型
- 批准号:
10469257 - 财政年份:
- 资助金额:
$ 22.86万 - 项目类别:
Helping to End Addiction Long-term (HEAL): 3D Bioprinted Tissue Models
帮助戒除长期成瘾 (HEAL):3D 生物打印组织模型
- 批准号:
10907365 - 财政年份:
- 资助金额:
$ 22.86万 - 项目类别: