Optimization of a Novel Thread Geometry for Various Orthopedic Surgery Applications
适用于各种骨科手术应用的新型螺纹几何形状的优化
基本信息
- 批准号:10324164
- 负责人:
- 金额:$ 110.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAnatomyAnimal ModelAnimalsArchitectureAreaBone ScrewsBusinessesCase SeriesClinicalClinical ResearchDataData ElementDefectDevelopmentEducationElementsEquipmentFaceFailureFatigueFinite Element AnalysisFractureFutureGeometryGoalsHealthcare SystemsHistologyHumanImageImplantIsraelLeadLifeManufacturer NameMechanicsMedical centerMethodologyMethodsModelingOrthopedic SurgeryOrthopedicsOsseointegrationOsteoporoticOutcomeOutsourcingPatient CarePatientsPerformancePhasePostoperative ComplicationsProcessProductionRadialResistanceResolutionRiskSheepSmall Business Innovation Research GrantSourceStressStudy modelsSurfaceTechnologyTestingTimeTorqueTranslatingTrauma patientWeight-Bearing stateWidthX-Ray Computed Tomographyaustinbasebonebone geometrybone preservationbone qualityclinical applicationcommercializationcostcost effectivecost effectivenessdesignefficacy evaluationhealingimprovedinnovationlong bonenovelosteoporotic bonepreventprototyperesearch and developmentsafety and feasibilitysample fixationsuccesstool
项目摘要
PROJECT SUMMARY/ABSTRACT
The majority of threaded interfaces (screws) used in orthopaedics utilize a buttress thread design which has
limitations in clinical application. Clinically, orthopaedic screws must resist the dynamic forces generated during
common activities of daily living, yet buttress screws are not designed to resist multidirectional force, leading to
increased risk of postoperative complications including screw loosening and failure of fixation. Since the
modifiable variables of buttress screw designs—including thread pitch, depth, width and face angle—are
interrelated, attempts to improve screw functionality by altering these variables is limited. The challenge in bone
threaded surface interface is in the optimization of threaded surfaces that meet the loading scenarios at different
anatomic sites with varying bone stock, more often than not, one of poor bone quality.
The development of innovative bone-screw-fastener technologies for the field of orthopaedic surgery is the
underlying focus of OsteoCentric, Inc., a small business based in Austin, TX. The company has designed,
manufactured and implemented a new bone-screw-fastener design, the Bone Interlocking Thread Geometry
(BITG), based on a technology that creates a circumferential interlocking interface that maximizes bone volume
and preserves bone architecture. The BITG overcomes many of the limitations of buttress screws by resisting
multidirectional forces and bending moments, minimizing radial forces, and allowing for higher finishing torques.
These enhancements can prevent fixation construct failure especially with cases with inadequate bone quality.
We have successfully developed and validated bone-thread-interface Finite Element (FE) models for three
loading conditions and have conducted a parametric FE analysis to optimize the BITG thread pitch geometry.
The SBIR Phase II proposal seeks to build on our early success by optimizing the thread geometry; testing it in
a large animal model; and optimizing the BITG thread manufacturing methodology. This will enable OsteoCentric
to market a clinically superior product that reduces the overall cost of implants to the healthcare system by
utilizing more cost-effective non-locking screws and plates. The specific aims of the Phase II are: Specific Aim
1: Conduct a comprehensive parametric analysis of the BITG using validated FE analysis to optimize cortical
and cancellous thread geometry for normal and osteoporotic bones. Specific Aim 2: Optimize methods of BITG
manufacturing to enhance cost-effectiveness and efficiency; build internal prototyping and manufacturing
expertise; and build an education package for outsource production manufacturers to streamline BITG
technology production. Specific Aim 3: Test the optimized BITG thread design against traditional buttress screw
using an ovine fracture model in both normal and osteoporotic conditions.
项目摘要/摘要
骨科中使用的大多数螺纹接口(螺钉)都使用具有支撑线设计
临床应用的局限性。临床上,骨科螺钉必须抵抗在
日常生活的常见活动,但螺丝螺钉并非旨在抵抗多向力,从而导致
术后并发症的风险增加,包括螺钉松动和固定失败。自从
支撑螺钉设计的可修改变量 - 包括螺纹螺距,深度,宽度和脸部角度 -
相互关联的,通过更改这些变量来改善螺丝功能的尝试是有限的。骨头的挑战
螺纹表面界面在优化的螺纹表面,这些表面符合不同的加载方案
骨骼库存变化的解剖部位,通常是骨质质量差的一个。
为骨科手术领域创新的骨螺旋 - 粘液技术的开发是
位于德克萨斯州奥斯汀市的小型企业Ostecentric,Inc。的基本重点。该公司设计了
制造并实施了一种新的骨螺旋 - 墨水设计,骨互锁线几何形状
(BITG),基于创建圆周互锁接口的技术,该接口最大化骨头体积
并保留骨骼建筑。 BITG通过抵抗来克服螺丝螺钉的许多局限性
多向力和弯曲力矩,最大程度地减少径向力,并允许更高的修饰扭矩。
这些增强功能可以防止固定构建故障,尤其是在骨质质量不足的情况下。
我们已经成功地开发并验证了三个的骨线界面有限元(Fe)模型
加载条件并进行了参数FE分析以优化BITG线螺距几何形状。
SBIR II期提案试图通过优化线程几何形状来建立我们的早期成功。测试它
大型动物模型;并优化BITG线程制造方法。这将使骨中心
销售临床上卓越的产品,可通过
使用更具成本效益的非锁定螺钉和板。第二阶段的具体目的是:特定目标
1:使用经过验证的FE分析对BITG进行全面参数分析以优化皮质
并取消了正常和骨质疏松骨骼的螺纹几何形状。特定目标2:优化BITG的方法
制造业以提高成本效益和效率;建造内部原型制造和制造
专业知识;并为外包生产制造商提供教育计划,以简化BITG
技术生产。特定目标3:针对传统支撑螺钉测试优化的BITG线程设计
在正常和骨质疏松条件下使用卵巢断裂模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ray Fauth其他文献
Andrew Ray Fauth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ray Fauth', 18)}}的其他基金
Optimization of a Novel Thread Geometry for Various Orthopedic Surgery Applications
适用于各种骨科手术应用的新型螺纹几何形状的优化
- 批准号:
10491290 - 财政年份:2021
- 资助金额:
$ 110.44万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding antibody responses and defining correlates of protection for endemic and pandemic coronavirus strains
了解抗体反应并定义地方性和大流行性冠状病毒株保护的相关性
- 批准号:
10549479 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Function of T cells at the Maternal-Fetal Interface
母胎界面 T 细胞的功能
- 批准号:
10555292 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别:
Profiling and leveraging bystander T cells within the tumor microenvironment
分析和利用肿瘤微环境中的旁观者 T 细胞
- 批准号:
10573231 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别:
Profiling and leveraging bystander T cells within the tumor microenvironment
分析和利用肿瘤微环境中的旁观者 T 细胞
- 批准号:
10554642 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别:
Scapular Mechanisms of Movement-Related Shoulder Dysfunction
运动相关肩部功能障碍的肩胛机制
- 批准号:
10386150 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别: