Optimization of a Novel Thread Geometry for Various Orthopedic Surgery Applications
适用于各种骨科手术应用的新型螺纹几何形状的优化
基本信息
- 批准号:10324164
- 负责人:
- 金额:$ 110.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAnatomyAnimal ModelAnimalsArchitectureAreaBone ScrewsBusinessesCase SeriesClinicalClinical ResearchDataData ElementDefectDevelopmentEducationElementsEquipmentFaceFailureFatigueFinite Element AnalysisFractureFutureGeometryGoalsHealthcare SystemsHistologyHumanImageImplantIsraelLeadLifeManufacturer NameMechanicsMedical centerMethodologyMethodsModelingOrthopedic SurgeryOrthopedicsOsseointegrationOsteoporoticOutcomeOutsourcingPatient CarePatientsPerformancePhasePostoperative ComplicationsProcessProductionRadialResistanceResolutionRiskSheepSmall Business Innovation Research GrantSourceStressStudy modelsSurfaceTechnologyTestingTimeTorqueTranslatingTrauma patientWeight-Bearing stateWidthX-Ray Computed Tomographyaustinbasebonebone geometrybone preservationbone qualityclinical applicationcommercializationcostcost effectivecost effectivenessdesignefficacy evaluationhealingimprovedinnovationlong bonenovelosteoporotic bonepreventprototyperesearch and developmentsafety and feasibilitysample fixationsuccesstool
项目摘要
PROJECT SUMMARY/ABSTRACT
The majority of threaded interfaces (screws) used in orthopaedics utilize a buttress thread design which has
limitations in clinical application. Clinically, orthopaedic screws must resist the dynamic forces generated during
common activities of daily living, yet buttress screws are not designed to resist multidirectional force, leading to
increased risk of postoperative complications including screw loosening and failure of fixation. Since the
modifiable variables of buttress screw designs—including thread pitch, depth, width and face angle—are
interrelated, attempts to improve screw functionality by altering these variables is limited. The challenge in bone
threaded surface interface is in the optimization of threaded surfaces that meet the loading scenarios at different
anatomic sites with varying bone stock, more often than not, one of poor bone quality.
The development of innovative bone-screw-fastener technologies for the field of orthopaedic surgery is the
underlying focus of OsteoCentric, Inc., a small business based in Austin, TX. The company has designed,
manufactured and implemented a new bone-screw-fastener design, the Bone Interlocking Thread Geometry
(BITG), based on a technology that creates a circumferential interlocking interface that maximizes bone volume
and preserves bone architecture. The BITG overcomes many of the limitations of buttress screws by resisting
multidirectional forces and bending moments, minimizing radial forces, and allowing for higher finishing torques.
These enhancements can prevent fixation construct failure especially with cases with inadequate bone quality.
We have successfully developed and validated bone-thread-interface Finite Element (FE) models for three
loading conditions and have conducted a parametric FE analysis to optimize the BITG thread pitch geometry.
The SBIR Phase II proposal seeks to build on our early success by optimizing the thread geometry; testing it in
a large animal model; and optimizing the BITG thread manufacturing methodology. This will enable OsteoCentric
to market a clinically superior product that reduces the overall cost of implants to the healthcare system by
utilizing more cost-effective non-locking screws and plates. The specific aims of the Phase II are: Specific Aim
1: Conduct a comprehensive parametric analysis of the BITG using validated FE analysis to optimize cortical
and cancellous thread geometry for normal and osteoporotic bones. Specific Aim 2: Optimize methods of BITG
manufacturing to enhance cost-effectiveness and efficiency; build internal prototyping and manufacturing
expertise; and build an education package for outsource production manufacturers to streamline BITG
technology production. Specific Aim 3: Test the optimized BITG thread design against traditional buttress screw
using an ovine fracture model in both normal and osteoporotic conditions.
项目概要/摘要
骨科中使用的大多数螺纹接口(螺钉)均采用偏梯形螺纹设计,具有
临床上,矫形螺钉必须能够抵抗手术过程中产生的动态力。
日常生活中常见的活动,但偏梯形螺钉的设计不能抵抗多向力,导致
术后并发症的风险增加,包括螺钉松动和固定失败。
偏梯形螺钉设计的可修改变量——包括螺距、深度、宽度和面角——
相互关联,通过改变这些变量来改善螺钉功能的尝试是有限的。
螺纹面接口正在对满足不同负载场景的螺纹面进行优化
具有不同骨量的解剖部位,通常是骨质量较差的部位之一。
骨科手术领域创新骨螺钉紧固件技术的发展是
OsteoCentric, Inc. 是一家位于德克萨斯州奥斯汀的小型企业,其基本重点是设计:
制造并实施了一种新的骨螺钉紧固件设计,即骨互锁螺纹几何形状
(BITG),基于一种可创建周向互锁界面的技术,可最大限度地增加骨量
并保留骨骼结构,BITG 通过抵抗克服了支撑螺钉的许多局限性。
多向力和弯矩,最大限度地减少径向力,并允许更高的精加工扭矩。
这些增强功能可以防止固定结构失败,尤其是在骨质量不足的情况下。
我们已成功开发并验证了三种骨螺纹界面有限元 (FE) 模型
负载条件并进行了参数有限元分析,以优化 BITG 螺纹螺距几何形状。
SBIR 第二阶段提案旨在通过优化螺纹几何形状来在我们早期的成功基础上进行测试;
大型动物模型;以及优化 BITG 线制造方法,这将使 OsteoCentric 成为可能。
营销临床上卓越的产品,通过以下方式降低医疗保健系统植入物的总体成本
使用更具成本效益的非锁定螺钉和板 第二阶段的具体目标是: 具体目标。
1:使用经过验证的 FE 分析对 BITG 进行全面的参数分析,以优化皮质
以及用于正常和骨质疏松骨骼的松质螺纹几何形状。 具体目标 2:优化 BITG 方法。
制造以提高成本效益和效率;建立内部原型和制造
专业知识;并为外包生产制造商构建教育包以简化 BITG
具体目标 3:针对传统偏梯形螺钉测试优化的 BITG 螺纹设计。
在正常和骨质疏松条件下使用绵羊骨折模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ray Fauth其他文献
Andrew Ray Fauth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ray Fauth', 18)}}的其他基金
Optimization of a Novel Thread Geometry for Various Orthopedic Surgery Applications
适用于各种骨科手术应用的新型螺纹几何形状的优化
- 批准号:
10491290 - 财政年份:2021
- 资助金额:
$ 110.44万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding antibody responses and defining correlates of protection for endemic and pandemic coronavirus strains
了解抗体反应并定义地方性和大流行性冠状病毒株保护的相关性
- 批准号:
10549479 - 财政年份:2023
- 资助金额:
$ 110.44万 - 项目类别:
Function of T cells at the Maternal-Fetal Interface
母胎界面 T 细胞的功能
- 批准号:
10555292 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别:
Profiling and leveraging bystander T cells within the tumor microenvironment
分析和利用肿瘤微环境中的旁观者 T 细胞
- 批准号:
10573231 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别:
Profiling and leveraging bystander T cells within the tumor microenvironment
分析和利用肿瘤微环境中的旁观者 T 细胞
- 批准号:
10554642 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别:
Scapular Mechanisms of Movement-Related Shoulder Dysfunction
运动相关肩部功能障碍的肩胛机制
- 批准号:
10386150 - 财政年份:2022
- 资助金额:
$ 110.44万 - 项目类别: