Integrating protein structure and genomic data to predict antibiotic resistance in Mycobacterium tuberculosis
整合蛋白质结构和基因组数据来预测结核分枝杆菌的抗生素耐药性
基本信息
- 批准号:10312207
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-10-02
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActive SitesAddressAffectAntibiotic ResistanceAntibioticsAntitubercular AgentsAntitubercular AntibioticsBacteriaBacterial GenesBenchmarkingBiologicalCessation of lifeClinicClinicalComputer AnalysisConsumptionCrystallizationDataData SetDevelopmentDiagnosisDiagnosticDiseaseEvolutionFrequenciesGenesGenetic MarkersGenomeGenomicsGenotypeKnowledgeLeadLigand BindingLocationM. tuberculosis genomeMapsMeasuresMethodsMicrobeModelingMolecularMutationMycobacterium tuberculosisPharmaceutical PreparationsPhenotypePrevalenceProteinsProteomeResistanceShapesSignal TransductionSiteSourceStatistical MethodsStructureSumTestingTimeTuberculosisVariantWorkbasefitnessgenetic associationgenetic variantgenomic datahuman pathogenmicrobial genomepathogenpathogenic bacteriaphenotypic dataprotein functionprotein structureprotein structure predictionresistant strainthree dimensional structuretool
项目摘要
Project Abstract
Tuberculosis causes over one million deaths annually, and increasing antibiotic resistance is rendering
the disease more difficult to treat. Rapid genotype-based resistance diagnosis of Mycobacterium tuberculosis,
the bacterium that causes tuberculosis, is needed to overcome the long treatment delays associated with culture-
based methods. Previous work has established sets of genetic markers of antibiotic resistance to more common
antibiotics, but such studies require large numbers of sequenced resistant isolates, and are unable to make
predictions for rare or newly observed variants. The requirement for large numbers of isolates is especially
problematic for five newly introduced antitubercular agents, which have small but increasing numbers of
documented resistant isolates.
Traditional methods for associating genotype with phenotype assume that every site is independent, and
therefore many examples of mutations at a particular site are needed to infer statistically significant effects of
variants on phenotype. Biological knowledge tells us that this assumption is not true – most bacterial genes
encode proteins, which have distinct three-dimensional shapes and functions. Mutations that causes changes in
similar regions of a protein are more likely to have similar effects on phenotype, potentially allowing for sharing
of statistical signal that could increase the power of significance testing.
In this proposed project, I will develop two complimentary statistical approaches that will use protein
three-dimensional structure to boost signal from genetic variants that cause antibiotic resistance in M.
tuberculosis. Specifically, I will first develop an unsupervised statistical test to determine if repeated mutations
within the same protein are clustered in three-dimensional space, which indicates that the mutations confer a
fitness benefit. This approach will have increased sensitivity over traditional methods that look for significant
numbers of mutations, and facilitate the development of mechanistic hypotheses about the effects of mutation
on protein function. Second, I will use protein three-dimensional structure as a prior in a Bayesian linear mixed
model to predict antibiotic resistance. This prior will allow nearby variants to ‘boost’ one another’s signal and
establish associations between genotype and phenotype that are beyond the reach of current methods. The key
application of this approach will be establishing resistance-conferring genotypes for five newly introduced
antitubercular agents. The approach proposed here will likely generalize to other bacterial pathogens and
represent an important leap forward in using pathogen molecular data in the clinic.
项目摘要
结核病每年导致超过一百万人死亡,抗生素耐药性的增加正在导致
这种疾病更难治疗。基于基因型的结核分枝杆菌耐药性快速诊断,
需要克服导致结核病的细菌,以克服与培养相关的长期治疗延误
先前的工作已经建立了一组更常见的抗生素耐药性的遗传标记。
抗生素,但此类研究需要大量测序的耐药菌株,并且无法确定
对罕见或新观察到的变异的预测尤其需要大量分离株。
对于五种新推出的抗结核药物来说存在问题,这些药物的数量虽小但数量不断增加
已记录的耐药菌株。
将基因型与表型关联的传统方法假设每个位点都是独立的,并且
因此,需要特定位点的许多突变例子来推断统计上显着的影响
生物学知识告诉我们,这种假设是不正确的——大多数细菌基因。
编码蛋白质,其具有独特的三维形状和功能,导致变化。
蛋白质的相似区域更有可能对表型产生相似的影响,从而可能允许共享
可以提高显着性检验能力的统计信号。
在这个拟议的项目中,我将开发两种使用蛋白质的互补统计方法
三维结构可增强来自导致分枝杆菌抗生素耐药性的遗传变异的信号。
具体来说,我将首先开发一个无监督的统计测试来确定是否存在重复突变。
同一蛋白质内的蛋白质聚集在三维空间中,这表明突变赋予了
与寻找显着健身益处的传统方法相比,这种方法将具有更高的敏感性。
突变的数量,并促进有关突变影响的机制假设的发展
其次,我将使用蛋白质三维结构作为贝叶斯线性混合的先验。
预测抗生素耐药性的模型将允许附近的变体“增强”彼此的信号并
建立基因型和表型之间的关联,这是当前方法无法达到的关键。
该方法的应用将为五种新引入的细菌建立赋予抗性的基因型
这里提出的方法可能会推广到其他细菌病原体和
使用病原体分子数据在临床中表示的重要飞跃。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Gustafson Green其他文献
Anna Gustafson Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
- 批准号:
10606798 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Identification and characterization of chemical probes for interrogation of the NEK family of kinases in cancer
用于研究癌症中 NEK 激酶家族的化学探针的鉴定和表征
- 批准号:
10503430 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10521596 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10662534 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别:
Structure-Activity Based Mechanistic Insights into Cleavage Chemistry by Self-Cleaving Nucleolytic Ribozymes
基于结构-活性的自裂解核酶裂解化学的机理见解
- 批准号:
10684151 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别: