Pharmacovigilance Methods: Leveraging Heterogeneous Adverse Drug Reaction Data
药物警戒方法:利用异质药物不良反应数据
基本信息
- 批准号:8660067
- 负责人:
- 金额:$ 41.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdverse eventAdverse reactionsCerealsCessation of lifeChemicalsClinicalClinical DataComplementDataData SetData SourcesDatabasesDetectionDrug usageEffectivenessElectronic Health RecordEvaluationHealth Care CostsHealthcareHospitalizationHospitalsIndividualKnowledgeLeadLiteratureLogistic RegressionsMedical Care CostsMethodologyMethodsModelingMyocardial InfarctionNatural Language ProcessingNew YorkPatientsPerformancePharmaceutical PreparationsPopulationPopulation HeterogeneityPositioning AttributePresbyterian ChurchProbabilityProcessPubMedPublicationsReactionReference StandardsReportingResearchResearch InfrastructureResourcesRisk FactorsRofecoxibSafetySignal TransductionSiteSourceStructureSystemTechniquesUnited States Food and Drug AdministrationWorkbasechemical propertyconditioningcostdata miningimprovedknowledge basenovelpatient populationpatient safetypost-marketpreventracial/ethnic differenceresearch and developmenttext searching
项目摘要
Adverse drug reactions (ADRs) are a major burden for patients and healthcare, causing preventable
hospitalizations and deaths, and incurring a huge cost. The long-term objective of this proposal is to advance
patient safety and reduce costs by discovering novel serious ADRs through use of automated methods that
combine information from large and varied patient populations as well as from the literature. There have been
considerable advances in pharmacovigilance, but more work is needed. For example, Vioxx, a commonly used
drug, was recently found to cause at least 88,000 occurrences of myocardial infarction, highlighting the
insufficiency of current methods. To date, methods have mainly depended on the use of single sources of data,
primarily from the Federal Food and Drug Administration Adverse Event Reporting System (FAERS) and from
electronic health records (EHRS). Although important, each of the sources has different limitations and
advantages, and therefore, combining the data across them should lead to more effective drug safety
surveillance by increasing the statistical power, and also by allowing each data source to complement the other
sources. We already have developed methods associated with each of the single sources, and therefore, this
is an excellent opportunity to build upon our research accomplishments to advance the state of the art in
pharmacovigilance.
More specifically, we will a) acquire and combine comprehensive clinical data from the electronic health
records (EHRs) of two different health care sites serving diverse populations by utilizing natural language
processing (NLP) to obtain vast quantities of fine-grained data, and then by developing data mining
methodologies on the clinical data to detect novel ADR signals, b) analyze differences in therapy-related risk
factors between the two EHR populations, such as racial and ethnic differences, c) detect ADR signals in the
FAERS database using an established methodology, d) develop improved methods to acquire ADR signals
based on information in the literature, and e) develop methods that utilize the results from the above sources to
maximize effectiveness. We will focus on eight serious ADRs, and collect a high-quality reference standard for
those ADRs so that we will be able to evaluate and compare performance of the different detection methods
individually as well as the methods that combine the sources.
This proposal is well positioned to overcome problems associated with existing automated methods, which
are primarily based on use of individual sources of data. We are confident the methods will be effective
because a strong infrastructure is in place for us to build upon. Most importantly, the methodology developed in
this proposal presents an excellent chance to leverage heterogeneous data sources to dramatically improve
patient safety and reduce costs.
药物不良反应 (ADR) 是患者和医疗保健人员的主要负担,导致可预防的不良反应
住院和死亡,并造成巨大的费用。该提案的长期目标是推进
通过使用自动化方法发现新的严重 ADR,确保患者安全并降低成本
结合来自大量不同患者群体以及文献的信息。曾经有过
药物警戒方面取得了相当大的进展,但还需要做更多的工作。例如,Vioxx,一种常用的
最近发现这种药物会导致至少 88,000 例心肌梗塞发生,这凸显了
现有方法的不足。迄今为止,方法主要依赖于单一数据源的使用,
主要来自联邦食品和药物管理局不良事件报告系统 (FAERS) 和
电子健康记录(EHRS)。尽管很重要,但每个来源都有不同的局限性和
优点,因此,结合它们之间的数据应该会带来更有效的药物安全性
通过提高统计能力以及允许每个数据源相互补充来进行监测
来源。我们已经开发了与每个单一来源相关的方法,因此,这
是一个很好的机会,可以利用我们的研究成果来推进最先进的技术
药物警戒。
更具体地说,我们将 a) 获取并结合来自电子健康的全面临床数据
利用自然语言为不同人群提供服务的两个不同医疗保健站点的记录 (EHR)
处理(NLP)以获得海量的细粒度数据,然后通过开发数据挖掘
检测新 ADR 信号的临床数据方法,b) 分析治疗相关风险的差异
两个 EHR 人群之间的因素,例如种族和民族差异,c) 检测 ADR 信号
使用既定方法的 FAERS 数据库,d) 开发改进的方法来获取 ADR 信号
基于文献中的信息,以及 e) 开发利用上述来源的结果的方法
最大限度地提高效率。我们将重点关注八个严重的ADR,为ADR收集高质量的参考标准。
这些 ADR 以便我们能够评估和比较不同检测方法的性能
单独以及组合来源的方法。
该提案很好地克服了与现有自动化方法相关的问题,
主要基于个人数据源的使用。我们相信这些方法将是有效的
因为我们有强大的基础设施可供发展。最重要的是,该方法开发于
该提案提供了一个利用异构数据源来显着改进的绝佳机会
患者安全并降低成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CAROL FRIEDMAN其他文献
CAROL FRIEDMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CAROL FRIEDMAN', 18)}}的其他基金
Pharmacovigilence using Natural Language Processing, Statistics, and the EHR
使用自然语言处理、统计和 EHR 进行药物警戒
- 批准号:
8105502 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Pharmacovigilence using Natural Language Processing, Statistics, and the EHR
使用自然语言处理、统计和 EHR 进行药物警戒
- 批准号:
8318253 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Pharmacovigilence using Natural Language Processing, Statistics, and the EHR
使用自然语言处理、统计和 EHR 进行药物警戒
- 批准号:
7937173 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Pharmacovigilance Methods: Leveraging Heterogeneous Adverse Drug Reaction Data
药物警戒方法:利用异质药物不良反应数据
- 批准号:
8882546 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Pharmacovigilence using Natural Language Processing, Statistics, and the EHR
使用自然语言处理、统计和 EHR 进行药物警戒
- 批准号:
7870862 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Pharmacovigilence using Natural Language Processing, Statistics, and the EHR
使用自然语言处理、统计和 EHR 进行药物警戒
- 批准号:
7631876 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Pharmacovigilence using Natural Language Processing, Statistics, and the EHR
使用自然语言处理、统计和 EHR 进行药物警戒
- 批准号:
7779983 - 财政年份:2009
- 资助金额:
$ 41.78万 - 项目类别:
Semantic and Machine Learning Methods for Mining Connections in the UMLS
UMLS 中挖掘连接的语义和机器学习方法
- 批准号:
7498449 - 财政年份:2007
- 资助金额:
$ 41.78万 - 项目类别:
A Biomedical Natural Language Processing Resource
生物医学自然语言处理资源
- 批准号:
7075417 - 财政年份:2005
- 资助金额:
$ 41.78万 - 项目类别:
A Biomedical Natural Language Processing Resource
生物医学自然语言处理资源
- 批准号:
7257857 - 财政年份:2005
- 资助金额:
$ 41.78万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Intermediate-Size Expanded Access Trial of Autologous Hybrid TREG/Th2 Cell Therapy (RAPA-501) of Amyotrophic Lateral Sclerosis
肌萎缩侧索硬化症自体杂交 TREG/Th2 细胞疗法 (RAPA-501) 的中型扩大试验
- 批准号:
10834469 - 财政年份:2023
- 资助金额:
$ 41.78万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 41.78万 - 项目类别:
Improving the Detection of Hypertrophic Cardiomyopathy Using Machine Learning Applied to Electronic Health Record Data
利用机器学习应用于电子健康记录数据来改善肥厚型心肌病的检测
- 批准号:
10740278 - 财政年份:2023
- 资助金额:
$ 41.78万 - 项目类别:
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
$ 41.78万 - 项目类别:
Unplanned ICU Admissions: Understanding Mechanisms and Identifying Associations with Patient- and Family-Centered Outcomes
计划外 ICU 入院:了解机制并确定与以患者和家庭为中心的结果的关联
- 批准号:
10364037 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别: