Defining Mechanisms of NAIP5-independent Flagellin Sensing during Bacterial Infection
细菌感染期间不依赖 NAIP5 的鞭毛蛋白传感的定义机制
基本信息
- 批准号:10313353
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsArginineBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBindingBiologicalBone MarrowC-terminalCASP1 geneCaspaseCell DeathCellsCessation of lifeChimera organismCleaved cellComplexComprehensionCytosolDataDetectionDevelopmentEctopic ExpressionEnsureEnvironmentFamilyFellowshipFlagellaFlagellinFutureGeneticGoalsHealthcare SystemsHematopoieticImmune responseIn VitroInfectionInfection ControlInflammasomeInflammatoryInflammatory ResponseInnate Immune ResponseInnate Immune SystemInterleukin-1Legionella pneumophilaLeucine-Rich RepeatLicensingMalignant NeoplasmsMediatingMembraneMentorshipMolecularMusMutation DetectionNucleotidesOrganellesOutcomePasteurella pseudotuberculosisPathogen detectionPatternPattern recognition receptorPennsylvaniaProteinsPublic HealthResearchResearch TrainingSalmonella typhimuriumScientistSignal TransductionStructural ProteinStructureSystemTLR2 geneTLR5 geneTerminator CodonTertiary Protein StructureTestingTherapeuticTimeTrainingTranscriptional ActivationType III Secretion System PathwayUnited StatesUniversitiesVDAC1 genebasecareercell motilityclinically relevantcombatcytokineexpression vectorextracellularin vivoinnate immune mechanismsmacrophageneuronal apoptosis inhibitory proteinnovelpathogenpathogenic bacteriareceptorreconstitutionrecruitresponsesensor
项目摘要
PROJECT SUMMARY/ABSTRACT:
Antibiotic resistant bacterial infections are an immediate public threat to the United States and global
healthcare systems. We must gain a deeper understanding of the innate immune system’s response to bacterial
pathogens to facilitate development of host-directed therapeutic approaches to combat bacterial infection. Many
clinically relevant bacterial pathogens harbor a flagellum comprised of the structural protein flagellin, which is
recognized by the extracellular Toll-like receptor 5 (TLR5) and the intracellular neuronal apoptosis inhibitory
protein 5 (NAIP5) sensor. NAIP5 sensing of flagellin results in the formation of a multiprotein inflammasome
complex containing the NLR caspase recruitment domain-containing protein 4 (NLRC4) which activates
caspase-1, triggering an inflammatory cell death called pyroptosis. In the course of infection, a number of
pathogens including Salmonella enterica serovar Typhimurium (S. Tm) deliver flagellin into the host cytosol,
leading to activation of the NAIP5-NLRC4 inflammasome. Multiple studies suggest that in mice, NAIP6 also
senses flagellin. Why there are two distinct sensors for cytosolic flagellin, as well as the biological circumstances
under which NAIP6 might sense flagellin is unknown. Intriguingly, bacterial flagellins from many clinically relevant
bacteria that do not activate NAIP5, lack a conserved arginine at the C terminus. Moreover, truncated S. Tm
flagellin with a stop codon inserted in the place of conserved three amino acids in its D0 domain (termed D0STOP)
abrogates recognition of flagellin by the host cell. These observations suggest that the C terminus of flagellin is
essential for NAIP5 sensing and that bacterial pathogens may escape NAIP5 by altering this domain. My
preliminary findings reveal that TLR2 priming of murine bone marrow derived macrophages (BMDMs) leads to
activation of a NLRC4-dependent response to D0STOP flagellin when delivered using the heterologous Type III
secretion system of Yersinia pseudotuberculosis (Yp). Altogether, these findings and my preliminary data
provoke the conceptually novel hypothesis that TLR2 signaling licenses NAIP6-dependent flagellin
sensing to overcome bacterial evasion of NAIP5. In Aim 1, I plan to determine how TLR2 licenses NAIP6-
NLRC4 inflammasome activation in TLR2 primed BMDMs and test if NAIP6 is sufficient to recognize flagellins
that evade NAIP5 sensing using Yp as a delivery system and a retroviral expression vector system to reconstitute
the NAIP5/6-NLRC4 inflammasome in 293T cells. In Aim 2, I will assess the contribution of NAIP6 flagellin
detection in eliciting protective host responses using Yp as a delivery system in Naip5-/- and Naip1-6D/D mice. The
scientific goal of this fellowship is to uncover a new mechanism for innate detection of flagellin and understand
why mice harbor two highly similar cytosolic sensors that detect flagellin. Another goal is to advance my training
as a scientist to propel a future career in leading my own independent research group. The strong mentorship
by Dr. Brodsky, an expert in host-pathogen interactions, and the research and training-oriented environment at
the University of Pennsylvania will ensure successful completion of this fellowship.
项目摘要/摘要:
抗生素耐药性细菌感染是对美国和全球的直接公共威胁
我们必须更深入地了解先天免疫系统对细菌的反应。
病原体,以促进针对宿主的治疗方法的开发,以对抗细菌感染。
临床相关的细菌病原体具有由结构蛋白鞭毛蛋白组成的鞭毛,该鞭毛蛋白是
被细胞外 Toll 样受体 5 (TLR5) 和细胞内神经元凋亡抑制因子识别
蛋白 5 (NAIP5) 传感器对鞭毛蛋白的 NAIP5 感应导致多蛋白炎症小体的形成。
含有 NLR caspase 募集结构域蛋白 4 (NLRC4) 的复合物,该蛋白可激活
caspase-1,引发称为细胞焦亡的炎症细胞死亡。
包括肠沙门氏菌鼠伤寒血清型 (S.Tm) 在内的病原体将鞭毛蛋白传递到宿主细胞质中,
多项研究表明,NAIP6 也会导致 NAIP5-NLRC4 炎症小体的激活。
为什么胞质鞭毛蛋白有两种不同的传感器,以及生物环境
有趣的是,许多临床相关的细菌鞭毛蛋白在何种情况下 NAIP6 可能会感知。
不激活 NAIP5 的细菌在 C 末端缺乏保守的精氨酸,而且 S.Tm 被截短。
在其 D0 结构域中保守的三个氨基酸位置插入终止密码子的鞭毛蛋白(称为 D0STOP)
消除宿主细胞对鞭毛蛋白的识别。这些观察结果表明鞭毛蛋白的 C 末端是。
对于 NAIP5 传感至关重要,并且细菌病原体可以通过改变该结构域来逃避 NAIP5。
初步研究结果表明,TLR2 启动小鼠骨髓源性巨噬细胞 (BMDM) 会导致
使用异源 III 型递送时,激活对 D0STOP 鞭毛蛋白的 NLRC4 依赖性反应
总而言之,这些发现和我的初步数据。
激发了概念上新颖的假设,即 TLR2 信号传导许可 NAIP6 依赖性鞭毛蛋白
在目标 1 中,我计划确定 TLR2 如何许可 NAIP6-。
TLR2 引发的 BMDM 中 NLRC4 炎性体激活并测试 NAIP6 是否足以识别鞭毛蛋白
使用 Yp 作为传递系统和逆转录病毒表达载体系统来重建,从而逃避 NAIP5 传感
293T 细胞中的 NAIP5/6-NLRC4 炎性体 在目标 2 中,我将评估 NAIP6 鞭毛蛋白的贡献。
使用 Yp 作为 Naip5-/- 和 Naip1-6D/D 小鼠的递送系统来诱导保护性宿主反应的检测。
该奖学金的科学目标是发现一种鞭毛蛋白先天检测的新机制并了解
为什么小鼠拥有两个高度相似的细胞质传感器来检测鞭毛蛋白另一个目标是推进我的训练。
作为一名科学家,领导我自己的独立研究小组推动未来的职业生涯。
布罗德斯基博士是宿主与病原体相互作用以及以研究和培训为导向的环境方面的专家
宾夕法尼亚大学将确保该奖学金的成功完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Grayczyk其他文献
James Grayczyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Nitrite Supplementation to Mitigate Fatigability and Increase Function in Long COVID Patients
补充亚硝酸盐可减轻长期新冠患者的疲劳并增强功能
- 批准号:
10590380 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Metabolic determinants of Staphylococcus aureus skin colonization
金黄色葡萄球菌皮肤定植的代谢决定因素
- 批准号:
10749745 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Role of PADI4 as a key epigenetic regulator of the p53 pathway and tumor suppression
PADI4 作为 p53 通路和肿瘤抑制的关键表观遗传调节因子的作用
- 批准号:
10603437 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别: