Chemistry and Biology of DNA Ligation
DNA 连接的化学和生物学
基本信息
- 批准号:10302270
- 负责人:
- 金额:$ 29.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:APTX geneAntibioticsBindingBiochemicalBiologicalBiological AssayBiologyCell NucleusCell physiologyCellsChemistryClinicalCollaborationsCommon Variable ImmunodeficiencyCoupledCrystallizationDNADNA BindingDNA DamageDNA LigasesDNA LigationDNA PrimaseDNA RepairDNA Repair PathwayDNA Sequence AlterationDNA biosynthesisDNA ligase IDNA-Directed DNA PolymeraseDefectDevelopmentDiagnosisDiscriminationDiseaseDisease modelDoctor of PhilosophyEnzymatic BiochemistryEnzymesFingersFoundationsGeneticGoalsGrantGrowthHealthHumanImmuneImmunologyInheritedInstitutesKineticsKnowledgeLIG4 geneLearningLigaseLigationMaintenanceMalignant NeoplasmsMammalian CellMetalsMichiganMitochondriaMitochondrial DNAModelingModificationMolecularMusMutationNeuroblastomaNonhomologous DNA End JoiningNormal CellNucleotidesOrganismPathway interactionsPatientsPediatric HospitalsPhenylalaninePolymerasePropertyProtein IsoformsProteinsRecombinantsResearchRibonucleotidesRoleSevere Combined ImmunodeficiencySideSiteSite-Directed MutagenesisSpecificityStructureStructure-Activity RelationshipSyndromeTestingThermodynamicsTranslatingUniversitiesWorkX-Ray CrystallographyXRCC1 genecancer therapycofactorcongenital immunodeficiencydefined contributiondisorder riskexperimental studyhuman DNAhuman diseaseinhibitorinsightmagnesium ionmouse developmentmutantnovelnovel therapeutic interventionoverexpressionrepairedresponsesugar
项目摘要
The goal of this proposal is to determine the mechanism and specificity of human DNA ligases. All organisms
have an absolute requirement for DNA replication and DNA repair in order to synthesize new cells and to
maintain correct cellular functions. DNA ligases catalyze the ultimate step in DNA replication and most DNA
repair pathways, however most research has focused on DNA polymerases and therefore we lack a
fundamental understanding of DNA ligase mechanisms and specificities. It is essential to learn the molecular
mechanism of human DNA ligases and that these insights will have significant value for understanding human
health. Our work is guided by the known biology of DNA repair and replication and we focus on unanswered
puzzles that cannot be explained by current understanding of these pathways. Some recent clinical examples
of where this knowledge is critical is in patients with inherited mutations in DNA ligase genes, such as LIG1
syndrome which causes a Primary ImmunoDeficiency and LIG4 syndrome which causes Severe Combined
ImmunoDeficiency (SCID), and in abnormal states such as cancer in which ligases, especially LIG3, have
been overexpressed. We will use quantitative mechanistic enzymology and x-ray crystallography (in
collaboration with Dr. Scott Williams) to characterize human DNA ligase 1 (LIG1) and DNA ligase 3 (LIG3).
Genetic observations suggest that these enzymes have unique functions, but share some similarities. For
example, LIG1 and LIG3 both function in DNA repair and replication in the nucleus, but only LIG3 functions in
the mitochondria. We will extend our previous kinetic and structural studies of LIG1 to understand specificity of
this enzyme and to define the minimal steps in locating and engaging a single strand break. We have recently
succeeded in producing large quantities of recombinant LIG3 alpha and beta isoforms and we will perform a
kinetic and thermodynamic characterization to understand similarities and differences with LIG1. For both
enzymes, we will use site-directed mutagenesis to target specific functions, such as metal cofactor binding,
DNA binding, and catalytic specificity. Analysis of these mutant proteins will provide an understanding of the
molecular features of eukaryotic DNA ligation that will be invaluable to understand ligase function in normal
cells and in human disease. The core objectives of the grant are to develop a molecular understanding of the
mechanism and specificity of LIG1 and LIG3, but the mechanistic models that emerge will then be tested in an
appropriate cell. This work will uncover the interconnections between different DNA repair pathways and
provide a strong foundation for understanding regulatory interactions and modifications.
该提案的目标是确定人类 DNA 连接酶的机制和特异性。所有生物体
对 DNA 复制和 DNA 修复有绝对的要求,以合成新细胞并
维持正确的细胞功能。 DNA 连接酶催化 DNA 复制和大多数 DNA 的最终步骤
修复途径,然而大多数研究都集中在 DNA 聚合酶上,因此我们缺乏
对 DNA 连接酶机制和特异性的基本了解。学习分子生物学很重要
人类 DNA 连接酶的机制,这些见解对于理解人类具有重要价值
健康。我们的工作以已知的 DNA 修复和复制生物学为指导,我们专注于尚未解答的问题
目前对这些途径的理解无法解释这些难题。最近的一些临床例子
这一知识的关键在于 DNA 连接酶基因(例如 LIG1)具有遗传性突变的患者
导致原发性免疫缺陷的综合征和导致严重联合的 LIG4 综合征
免疫缺陷 (SCID) 以及癌症等异常状态,其中连接酶(尤其是 LIG3)具有
被过度表达了。我们将使用定量机械酶学和 X 射线晶体学(在
与 Scott Williams 博士合作)表征人类 DNA 连接酶 1 (LIG1) 和 DNA 连接酶 3 (LIG3)。
遗传观察表明这些酶具有独特的功能,但也有一些相似之处。为了
例如,LIG1和LIG3都在细胞核中的DNA修复和复制中发挥作用,但只有LIG3在细胞核中发挥作用。
线粒体。我们将扩展之前对 LIG1 的动力学和结构研究,以了解
这种酶并定义定位和接合单链断裂的最少步骤。我们最近有
成功生产大量重组 LIG3 α 和 β 亚型,我们将进行
动力学和热力学表征,以了解与 LIG1 的异同。对于两者
酶,我们将使用定点诱变来靶向特定功能,例如金属辅因子结合,
DNA 结合和催化特异性。对这些突变蛋白的分析将有助于了解
真核 DNA 连接的分子特征对于理解正常连接酶的功能非常有价值
细胞和人类疾病。该赠款的核心目标是发展对分子的理解
LIG1 和 LIG3 的机制和特异性,但出现的机制模型将在
合适的细胞。这项工作将揭示不同 DNA 修复途径和
为理解监管相互作用和修改提供坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick J O'Brien其他文献
Patrick J O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick J O'Brien', 18)}}的其他基金
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7879360 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7667817 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
8097478 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7501279 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
- 批准号:
9068971 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
- 批准号:
8734457 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7321524 - 财政年份:2007
- 资助金额:
$ 29.86万 - 项目类别:
相似国自然基金
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于可逆相分离构建靶向纳米抗生素用于克服CRE多重耐药机制的研究
- 批准号:82373781
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
- 批准号:32360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
排水管网沉积物中抗生素对功能菌降解PAHs的影响机制
- 批准号:
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:
基于量子点指纹图谱和深度卷积神经网络的水体抗生素检测方法研究
- 批准号:42307546
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
Phosphodiesterase 4B Inhibition as a Therapeutic Target for Alcohol-associated Liver Disease
磷酸二酯酶 4B 抑制作为酒精相关性肝病的治疗靶点
- 批准号:
10354185 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
NLRP10 Inflamasome in Gram-positive Sepsis
革兰氏阳性脓毒症中的 NLRP10 炎性体
- 批准号:
10680214 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别: