Defining the mechanism of lipid peroxidation in controlling Staphylococcus aureus infections

定义脂质过氧化控制金黄色葡萄球菌感染的机制

基本信息

项目摘要

Project Summary Staphylococcus aureus infects every niche of the human host and is the leading cause of Gram-positive sepsis. There are over 900,000 severe S. aureus infections in the United States annually, emphasizing the need for new antibiotics to treat these infections. Understanding the molecular mechanisms used by the host to kill S. aureus and by S. aureus to defend against host killing will identify and validate novel targets for antimicrobial design. When the host encounters S. aureus, immune cells excrete various bactericidal small molecules. One class of bactericidal small molecules are polyunsaturated fatty acids, which are toxic to many bacterial species, but until recently the mechanism of toxicity was undefined. We discovered that arachidonic acid (AA), an abundant host polyunsaturated fatty acid, is bactericidal against S. aureus through a lipid peroxidation mechanism. AA is oxidized in S. aureus to a,b-unsaturated carbonyls and g-ketoaldehydes that are electrophilic, reacting with nucleophilic amino acids of the S. aureus proteome. Scavenging either oxidants that initiate lipid peroxidation or electrophiles generated through lipid peroxidation protects S. aureus from AA killing, confirming lipid peroxidation generated electrophiles as the bactericidal effectors of AA. Discovering the mechanism of AA toxicity against S. aureus is just the first step in identifying and validating lipid peroxidation as an antimicrobial strategy. We do not know the lipid electrophile species generated in S. aureus and what S. aureus proteins are targeted by electrophiles. We also do not know the S. aureus processes that produce the oxidants responsible for initiating lipid peroxidation or the identity of the oxidants produced in S. aureus. Finally, we do not know the specific host niches where lipid peroxidation is bactericidal or which host niches are most promising to test lipid peroxidation as an antimicrobial therapy. This proposal will expand the understanding of the bactericidal mechanisms of AA both in vitro and in vivo by testing three main hypotheses. In Aim 1, we will determine the lipid electrophile species and pathways of formation in S. aureus. This aim will test the hypothesis that oxidants derived from S. aureus respiration initiate lipid peroxidation resulting in a diverse array of bactericidal lipid electrophiles. In Aim 2, we will discover the protein targets of AA-derived lipid electrophiles in S. aureus. This aim will test the hypothesis that lipid electrophiles exert toxicity by disrupting enzymes in essential S. aureus processes through post-translational modification. In Aim 3, we will define the role of AA release in S. aureus pathogenesis. This aim will test the hypothesis that inhibiting host AA release results in increased S. aureus pathogenesis in a murine model of systemic infection and that the bactericidal role of AA will be different across the multiple host tissues tested. The insights gained from this proposal will further validate lipid peroxidation as an antimicrobial therapy, identify S. aureus proteins to target for antimicrobial development, and expand the understanding of the bactericidal role of AA in vivo.
项目摘要 金黄色葡萄球菌感染了人类宿主的每个小众,是革兰氏阳性的主要原因 败血症。每年在美国有超过900,000个严重的金黄色葡萄球菌感染,强调 需要新的抗生素来治疗这些感染。了解宿主使用的分子机制 杀死S.金黄色葡萄球菌和金黄色葡萄球菌以防御宿主杀人,将确定并验证新的目标 抗菌设计。当宿主遇到金黄色葡萄球菌时,免疫细胞排泄各种杀菌小 分子。一类杀菌小分子是多不饱和脂肪酸,对许多人有毒 细菌种类,但直到最近,毒性机制仍未定义。我们发现那蛛网 酸(AA)是一种丰富的宿主多不饱和脂肪酸,通过脂质对金黄色葡萄球菌是杀菌性的 过氧化机制。 AA在金黄色葡萄球菌中被氧化为A,b-无饱和羰基和G-酮醛 是亲电的,与金黄色葡萄球菌的亲核氨基酸反应。清除任一氧化剂 启动通过脂质过氧化产生的脂质过氧化或电生物可保护金黄色葡萄球菌免受AA的影响 杀死,确认脂质过氧化产生的电力是AA的杀菌效应子。发现 对金黄色葡萄球菌的AA毒性机制只是识别和验证脂质过氧化的第一步 作为一种抗菌策略。我们不知道金黄色葡萄球菌和S. 金黄色葡萄球菌蛋白是由电力靶向的。我们也不知道产生的金黄色葡萄球菌过程 负责引发脂质过氧化的氧化剂或金黄色葡萄球菌产生的氧化剂的身份。 最后,我们不知道脂质过氧化为杀菌或宿主壁ni的特定宿主生态位 最有希望的是将脂质过氧化作为一种​​抗菌治疗。该建议将扩大 通过测试三个主要假设,了解体外和体内AA的杀菌机制。 在AIM 1中,我们将确定金黄色葡萄球菌中的脂质电力物种和形成途径。这个目标 检验以下假设,即源自金黄色葡萄球菌呼吸的氧化剂启动脂质过氧化导致脂肪 杀菌脂质电力的多种阵列。在AIM 2中,我们将发现AA衍生脂质的蛋白质靶标 金黄色葡萄球菌中的电力。该目标将检验以下假设:脂质电力通过破坏毒性 基本金黄色葡萄球菌过程中的酶通过翻译后修饰。在AIM 3中,我们将定义 AA释放在金黄色葡萄球菌发病机理中的作用。这个目标将检验抑制主机AA释放的假设 在全身感染的鼠模型中导致金黄色葡萄球菌发病机理增加,并杀菌 在测试的多个宿主组织中,AA的作用将有所不同。从该提议中获得的见解将 进一步验证脂质过氧化作为一种​​抗菌治疗,鉴定金黄色葡萄球菌蛋白靶向 抗菌发育,并扩展对AA在体内杀菌作用的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

William Norris Bea...的其他基金

Defining the mechanism of lipid peroxidation in controlling Staphylococcus aureus infections
定义脂质过氧化控制金黄色葡萄球菌感染的机制
  • 批准号:
    10703348
    10703348
  • 财政年份:
    2022
  • 资助金额:
    $ 16.13万
    $ 16.13万
  • 项目类别:

相似国自然基金

氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
  • 批准号:
    32371222
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
  • 批准号:
    82300940
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
  • 批准号:
    82301621
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
  • 批准号:
    82373354
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Plugging & Pulling-in: tuning peptides for ToIC to overcome anitbiotic resistance
堵漏
  • 批准号:
    10737465
    10737465
  • 财政年份:
    2023
  • 资助金额:
    $ 16.13万
    $ 16.13万
  • 项目类别:
Serine/threonine kinase signaling in beta-lactam resistance of Staphylococcus aureus
金黄色葡萄球菌 β-内酰胺耐药中的丝氨酸/苏氨酸激酶信号传导
  • 批准号:
    10582130
    10582130
  • 财政年份:
    2023
  • 资助金额:
    $ 16.13万
    $ 16.13万
  • 项目类别:
Structural determinants of activity and mechanism of cationic peptide antibiotic activity against colistin-resistant bacteria
阳离子肽抗生素对粘菌素耐药菌活性的结构决定因素和机制
  • 批准号:
    10733264
    10733264
  • 财政年份:
    2023
  • 资助金额:
    $ 16.13万
    $ 16.13万
  • 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
  • 批准号:
    10464289
    10464289
  • 财政年份:
    2022
  • 资助金额:
    $ 16.13万
    $ 16.13万
  • 项目类别:
D-peptide Inhibitors of Uropathogenic E. coli Adhesion Proteins to Treat Urinary Tract Infections
尿路致病性大肠杆菌粘附蛋白 D 肽抑制剂治疗尿路感染
  • 批准号:
    10932838
    10932838
  • 财政年份:
    2022
  • 资助金额:
    $ 16.13万
    $ 16.13万
  • 项目类别: