A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
基本信息
- 批准号:10294246
- 负责人:
- 金额:$ 30.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary:
The 2014 Chemistry Nobel Prize was awarded for advances in fluorescent labeling, instrumentation and anal-
ysis methods which together, over the last decade, have resolved particle positions to within ≈20-30 nm.
That is, below the diffraction limit of light used to excite them. Superresolution has subsequently been used
to image β-amyloid fibers tied to neurodegenerative disorders and directly observe diffraction limited protein
clustering linked to cancer phenotypes.
While superresolved localization reveals static cellular structures of immediate relevance to health, it does
not provide direct insight into disease dynamics. Directly observing in vivo dynamics at the single molecule
level demands multi-particle superresolved particle tracking. Superresolved tracking is more difficult than
superresolved localization because – for the same number of photons collected – tracking requires mobile
particles to be localized over multiple image frames. Furthermore, multi-particle superresolved tracking re-
quires that this all be done while accounting for unavoidable overlapping particle trajectories within a confined
cellular volume a few diffraction limited volumes in size. Thus, to date, there is no systematic way to accurately
track more than one protein, of the millions of proteins, inside a volume the size of E. coli’s cytoplasm at once.
The overarching goal is therefore: To provide the first principled multi-particle superresolved track-
ing algorithm by exploiting the novel tools of Bayesian nonparametrics (BNPs) that have already deeply
impacted Data Science over the last decade. BNPs can learn particle numbers in each frame and particle
trajectories across all frames in a computationally tractable manner in a way that is directly informed by the
data (photons collected per pixel). The tracking method developed will be applied to multi-particle problems
– such as the assembly/disassembly of serine chemoreceptor, Tsr, complexes on E. coli’s inner membrane
– and problems involving abrupt dynamical changes – such as transitions between bound/unbound states of
RNA polymerases – naturally dealt with in the principled tracking framework proposed.
Two Specific Aims are proposed. Specific Aim I – Develop the very first, fully-integrated and unsupervised,
superresolved tracking algorithm for multiple diffraction-limited particles under the assumption that particles
diffuse with a single (unknown) diffusion coefficient. Specific Aim II – Repeat Specific Aim 1 for the case
where dynamical models according to which particles evolve are unknown or even changing in time (that is,
the restriction that dynamics be governed by simple diffusion is lifted). Within each Aim, we will: determine
particle numbers in each frame by adapting (nonparametric) Bernoulli processes; adapt observation models to
account for complex label photophysics and aliasing artifacts important for fast-moving particle; treat particle
confinement for particle diffusion in small bacterial cells while learning dynamical models by adapting Dirichlet
processes; incorporate detailed camera noise models.
项目摘要:
2014年化学诺贝尔奖因进步的富有效果标签,仪器和肛门奖而获得
在过去的十年中,YSIS方法共同将粒子位置解析为≈20-30nm之内。
也就是说,低于用于激发它们的光的衍射极限。后来使用了超分辨率
成像与神经退行性疾病有关的β-淀粉样蛋白纤维,并直接观察到衍射有限的蛋白
与癌症表型相关的聚类。
叠加的定位揭示了与健康直接相关的静态细胞结构,但它确实如此
不能直接了解疾病动态。直接观察单分子的体内动力学
水平需要多粒子叠加粒子跟踪。叠加的跟踪比
叠加的本地化是因为 - 对于收集的相同数量的照片 - 跟踪需要移动
粒子要在多个图像帧上定位。此外,多粒子叠加的跟踪重复
要求所有这些都在考虑不可避免的重叠粒子轨迹时完成所有这些
细胞体积几个衍射有限的体积。迄今为止,没有系统的方法可以准确
跟踪多个蛋白质的数百万蛋白质,在大肠杆菌细胞质大小的体积内。
因此,总体目标是:提供第一个主要的多粒子叠加轨道 -
ING算法通过利用已经深入的贝叶斯非参数(BNP)的新颖工具
在过去十年中影响了数据科学。 BNP可以在每个框架和粒子中学习粒子数
以计算方式的方式以一种直接告知所有框架的轨迹
数据(每个像素收集的光子)。开发的跟踪方法将应用于多粒子问题
- 例如丝氨酸化学感受器的组装/拆卸TSR,大肠杆菌内膜上的复合物
- 以及涉及突然动态变化的问题 - 例如在绑定/未结合状态之间的过渡
RNA聚合酶 - 在提出的主要跟踪框架中自然处理。
提出了两个特定目标。特定目标I - 开发非常第一个,完全集成且无监督的,
在颗粒的假设下,用于多个衍射限制颗粒的叠加跟踪算法
用单个(未知)扩散系数扩散。特定目标II - 重复该案件的特定目标1
如果粒子进化的动态模型未知甚至在时间上变化(也就是说,
解除了由简单扩散支配的动力学的限制)。在每个目标中,我们将:确定
通过适应(非参数)Bernoulli过程中的每个帧中的粒子数;适应观察模型
考虑复杂的标签摄影和混叠伪像,对快速移动粒子很重要;处理粒子
通过调整Dirichlet来学习动态模型的粒子扩散的结果
过程;合并详细的相机噪声模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Steve Presse的其他基金
Toward high spatiotemporal resolution models of single molecules for in vivo applications
用于体内应用的单分子高时空分辨率模型
- 批准号:1055232210552322
- 财政年份:2023
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
Scalable 3D molecular imaging and data analysis for cell census generation
用于细胞普查生成的可扩展 3D 分子成像和数据分析
- 批准号:1036988510369885
- 财政年份:2021
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
Theoretical Models of Single Molecule Dynamics from Minimal Photon Numbers
最小光子数的单分子动力学理论模型
- 批准号:1024494010244940
- 财政年份:2019
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:1052477410524774
- 财政年份:2019
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:1005925310059253
- 财政年份:2019
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
Theoretical Models of Single Molecule Dynamics from Minimal Photon Numbers
最小光子数的单分子动力学理论模型
- 批准号:1048319010483190
- 财政年份:2019
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:1066790310667903
- 财政年份:2023
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
Developing a novel EEG-based index for evaluating amyloid and tau burden in Alzheimer's Disease
开发一种基于脑电图的新型指数来评估阿尔茨海默病中淀粉样蛋白和 tau 蛋白的负担
- 批准号:1060205910602059
- 财政年份:2023
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:1005925310059253
- 财政年份:2019
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
Genetic Modifiers of Alzheimer Disease in PSEN1 Mutation Carriers in Puerto Rico
波多黎各 PSEN1 突变携带者中阿尔茨海默病的遗传修饰
- 批准号:93531749353174
- 财政年份:2016
- 资助金额:$ 30.06万$ 30.06万
- 项目类别:
DIAN-TU: Next Generation Prevention Trial
DIAN-TU:下一代预防试验
- 批准号:93432029343202
- 财政年份:2016
- 资助金额:$ 30.06万$ 30.06万
- 项目类别: