CRCNS: US-French Research Proposal: Neurovascular coupling-democracy or oligarchy?
CRCNS:美法研究提案:神经血管耦合——民主还是寡头?
基本信息
- 批准号:9048044
- 负责人:
- 金额:$ 12.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingBlood VesselsBlood flowBrainBrain regionCerebrovascular CirculationCognition DisordersCollaborationsComputer AnalysisComputer SimulationCoupledCouplingDataData AnalysesDemocracyDiagnosisDiffusionEducational process of instructingEngineeringExcitatory Amino Acid AntagonistsFunctional Magnetic Resonance ImagingGABA-B ReceptorGenerationsHumanImageLaboratoriesLifeMeasurementMeasuresMentorsMethodsMicroscopyModelingNeuronsNitric OxideOdorsOrganismPatternPharmaceutical PreparationsPhysicsPopulationProductionPropertyRattusReportingResearchResearch Project GrantsResearch ProposalsSignal TransductionStimulusSumTechniquesTestingTimeTranslatingUncertaintyUnderrepresented MinorityVasodilator AgentsWomanWorkbiological systemsbiophysical modelblood oxygen level dependentcomputational neurosciencedesignhemodynamicsimprovedin vivoinsightnervous system disorderneural patterningneuroimagingnovelolfactory bulbrelating to nervous systemresearch studyresponsesimulationtwo-photonundergraduate research
项目摘要
DESCRIPTION (provided by applicant): Understanding the relationship between neural activity and cerebral blood flow is critical for interpreting hemodynamic signals, such as those measured with fMRI. It has long been assumed that blood flow to a brain region reported the average, or linear summation, of local neural activity. Recent work has cast this simplistic model into doubt. This proposal will use in vivo two-photon imaging, in close coordination with computational analysis methods, to distinguish between two alternative hypotheses of how neural activity is coupled to changes in blood flow. In one model, a 'democracy', blood flow is controlled by a linear sum of all neural activity. Alternatively, in an 'oligarchy', small groups o highly active neurons exert a disproportionate amount of control over blood flow, resulting in non-linear neurovascular coupling. Computational modeling will be used to test if the observed linear or non-linear coupling can be mechanistically explained by the production and diffusion of nitric oxide (NO). The proposed experiments will be performed in the olfactory bulb of rats, where discrete subpopulations of neurons (glomeruli) will be visualized and stimulated with odors. Two-photon microscopy will be used to simultaneously measure neural activity and blood flow in defined neural populations and single blood vessels. Targeted applications of drugs will be made to increase or decrease the neural activity in a single glomerulus. These experiments will be guided by real-time data analysis to determine the optimal stimulus or pharmacological perturbation in order to obtain a more accurate quantification of the linearity or nonlinearity of neurovascular coupling. In parallel, computational models will be constructed to test if the generation and diffusion of NO, a potent vasodilator, can account for the observed neurovascular coupling. This proposal is a collaboration between the labs of Dr. Serge Charpak, who has expertise using two-photon microscopy to simultaneously measure neural activity and blood flow changes in the olfactory bulb, and that of Dr. Patrick Drew, who has a background in computational neuroscience and has developed novel hemodynamic data analysis methods. The combination of these two approaches will yield a quantitative understanding of how blood flow changes relate to neural activity, and a determination of the mechanisms underlying neurovascular coupling.
Hemodynamic signals, such as those measured by fMRI, are extensively used in inferring brain activity non-invasively, and being able to convert these hemodynamic signals into neural activity would be invaluable in diagnosing cognitive and neurological disorders. However, what specifically these changes in blood flow tell us about neural activity is not known. This proposal will result in a quantitative understanding of how neural activity is translated into hemodynamic signals, which will have immediate application to the interpretation of human imaging studies.
This proposal will support undergraduates in mentored summer research projects, building on Dr. Drew's track record of mentoring women and underrepresented minorities in undergraduate research. The results will be incorporated into an interdisciplinary undergraduate class taught by Dr. Drew, "Physical principles of living organisms", which applies physics and engineering principles to the study of biological systems.
描述(由申请人提供):理解神经活动和脑血流量之间的关系对于解释血流动力学信号至关重要,例如通过功能磁共振成像测量的血流动力学信号。长期以来,人们一直认为流向大脑区域的血流量报告的是平均值或线性总和。最近的工作对这种简单化的模型提出了质疑,该提案将使用体内双光子成像,与计算分析方法密切配合,来区分神经活动如何与变化耦合的两种替代假设。血在一种“民主”模型中,血流由所有神经活动的线性总和控制;而在“寡头”模型中,小群体或高度活跃的神经元对血流施加不成比例的控制。非线性神经血管耦合将用于测试观察到的线性或非线性耦合是否可以通过一氧化氮(NO)的产生和扩散来机械地解释。 ,其中离散将使用双光子显微镜来观察和刺激神经元亚群(肾小球),以同时测量特定神经群和单个血管中的神经活动和血流量。这些实验将在实时数据分析的指导下确定最佳刺激或药理学扰动,以获得神经血管线性或非线性的更准确量化。同时,将构建计算模型来测试 NO(一种有效的血管舒张剂)的产生和扩散是否可以解释观察到的神经血管耦合。该提案是 Serge Charpak 博士实验室之间的合作,他拥有耦合方面的专业知识。双光子显微镜可同时测量嗅球中的神经活动和血流变化,帕特里克·德鲁博士拥有计算神经科学背景,并开发了新颖的血流动力学数据分析方法,这两种方法的结合将实现这一目标。定量了解血流变化如何与神经活动相关,并确定神经血管耦合的机制。
血流动力学信号,例如通过功能磁共振成像测量的信号,用于非侵入性地推断大脑活动,并且能够将这些血流动力学信号转化为神经活动对于诊断认知和神经疾病来说是非常有价值的。然而,血流的这些变化具体是什么。告诉我们关于神经活动的信息尚不清楚。该提案将导致对神经活动如何转化为血流动力学信号的定量理解,这将立即应用于人类成像研究的解释。
该提案将基于德鲁博士在本科生研究中指导女性和代表性不足的少数族裔的记录,支持本科生开展受指导的夏季研究项目。该研究成果将纳入德鲁博士教授的跨学科本科生课程“生物体的物理原理”中。 ”,它将物理和工程学原理应用于生物系统的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick James Drew其他文献
Patrick James Drew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick James Drew', 18)}}的其他基金
Neural circuit control of fluid and solute clearance during sleep
睡眠期间液体和溶质清除的神经回路控制
- 批准号:
10673147 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
Neural circuit control of fluid and solute clearance during sleep
睡眠期间液体和溶质清除的神经回路控制
- 批准号:
10516497 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
Impaired Vasoreactivity, Sleep Degradation, and Impaired Clearance in the APOE4 Brain
APOE4 大脑中的血管反应性受损、睡眠质量下降和清除受损
- 批准号:
10665538 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
Project 3: Dissecting the neural and neuromodulatory control mechanisms of arterial dynamics during sleep
项目3:剖析睡眠期间动脉动力学的神经和神经调节控制机制
- 批准号:
10516503 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
Impaired Vasoreactivity, Sleep Degradation, and Impaired Clearance in the APOE4 Brain
APOE4 大脑中的血管反应性受损、睡眠质量下降和清除受损
- 批准号:
10370453 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
Project 3: Dissecting the neural and neuromodulatory control mechanisms of arterial dynamics during sleep
项目3:剖析睡眠期间动脉动力学的神经和神经调节控制机制
- 批准号:
10673165 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别:
A multimodal approach to understanding the development of neurovascular coupling
了解神经血管耦合发展的多模式方法
- 批准号:
10202746 - 财政年份:2017
- 资助金额:
$ 12.05万 - 项目类别:
CRCNS: US-French Research Proposal: Neurovascular coupling-democracy or oligarchy?
CRCNS:美法研究提案:神经血管耦合——民主还是寡头?
- 批准号:
9278168 - 财政年份:2015
- 资助金额:
$ 12.05万 - 项目类别:
相似国自然基金
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脑血管周细胞p38α-MAPK在阿尔茨海默病发病中的作用和治疗靶点研究
- 批准号:82371417
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
谷丙转氨酶GPT2通过组蛋白修饰促进培唑帕尼耐药的肾透明细胞癌血管拟态形成的机制研究
- 批准号:82303233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
BACE1调控铁死亡参与早发型痴呆(EOAD)微血管异常的机制研究
- 批准号:82371210
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多尺度仿生聚醚酮酮修复体时空调控多细胞交互作用诱导承力部位血管化骨再生的作用机制研究
- 批准号:32371396
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Integrated experimental and computational approach for accurate patient-specific vascular embolization
用于准确的患者特异性血管栓塞的综合实验和计算方法
- 批准号:
10724852 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Cerebral Autoregulation, Brain Perfusion, and Neurocognitive Outcomes After Traumatic Brain Injury (CAPCOG-TBI)
脑外伤后的大脑自动调节、脑灌注和神经认知结果 (CAPCOG-TBI)
- 批准号:
10733565 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Midlife cardiovascular stress physiology and preclinical cerebrovascular disease
中年心血管应激生理学与临床前脑血管疾病
- 批准号:
10720054 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
- 批准号:
10730722 - 财政年份:2023
- 资助金额:
$ 12.05万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 12.05万 - 项目类别: