Developmental regulation of tendon-bone connectivity in the jaw
颌骨腱骨连接的发育调节
基本信息
- 批准号:10424505
- 负责人:
- 金额:$ 45.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-08 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectCartilageCellsChondrocytesCongenital DisordersDataDevelopmentFGFR2 geneFibrocartilagesFluorescenceFutureGene DosageGenesGeneticGenetic TranscriptionGenomicsHybrid CellsHybridsIn Situ HybridizationJawJaw AbnormalitiesKnowledgeLigandsLimb structureMasticationMesodermMineralsModelingMolecularMorphologyMusNeural Crest CellOsteoblastsOutputPathologyPatternPopulationPositioning AttributePropertyRegulationRepressionSeriesSignal TransductionSpecific qualifier valueSpeechSystemTendon structureTestingTissuesTo specifyTranscriptional RegulationUp-RegulationVenusbonebone cellcartilage cellcell typedesigninsightjaw movementmouse geneticsmouse modelnotch proteinnovelosteogenicprogenitorrepairedscleraxissingle moleculesingle-cell RNA sequencingskeletalstem cells
项目摘要
PROJECT SUMMARY / ABSTRACT
Integration of the jaw with the surrounding musculature is essential for speech and mastication. A
fundamental step in jaw integration begins in development, with formation of stable tendon-bone attachments
that are zonally organized into tendon, fibrocartilage, mineralized fibrocartilage, and bone. The gradient of
skeletogenic cell types within the attachment arises from attachment progenitors (APs) that, through unclear
mechanisms, interpret chondrogenic versus tenogenic signaling to acquire distinct cell fates along the tendon-
bone axis. Even less is known about APs of the jaw which, unlike their counterparts in the limb and trunk, are
derived from neural crest cells (NCC). This study tests the idea that jaw APs differentiate into a gradient of
skeletogenic cell types through a series of binary switches that are regulated by an NCC-specific mechanism.
We have found that jaw APs express graded levels of Scx, Runx2, and Sox9 depending on their position along
the tendon-bone axis. We also found that during AP differentiation a novel intermediate Scx+/Runx2+
population emerges. In Runx2+/- mice this intermediate population fails to form, and APs differentiate into
tendon over cartilage/bone. While this suggests that tripotent APs differentiate through lineage-restricted
intermediates, how APs spatially interpret signals for tendon vs. cartilage/bone to make these cell fate
decisions and whether APs always choose between one fate or the other (e.g. tenocyte vs. osteoblast) or acquire
hybrid properties (e.g. osteofibrogenic) is unknown. We recently showed that an Fgf-Notch signaling axis is
regionally deployed along the tendon-bone interface and promotes AP differentiation into tendon over
cartilage/bone. This mechanism appears NCC-specific, as loss of Fgfr2 in mesoderm-derived APs does not
alter limb attachment development. In this study, we use mouse genetics along with cutting-edge genomics to
test that, during AP differentiation, integration of Fgf and Notch signaling promotes tendon cell fate in a series
of binary switches by regulating levels of Scx, Runx2, and Sox9 transcription. In Aim1 we will use clonal lineage
tracing and scRNA-seq to determine the lineage relationship between APs and the skeletogenic cells in the
tendon-bone attachment. In Aim2, we will use conditional mouse genetics to determine how differences in
Notch signal strength along the tendon-bone axis alter AP cell fate decisions. In Aim3, we will use a
combination of mouse genetics and CUT&RUN-seq to test that Erk signaling integrates Fgf and Notch
signaling through linear and parallel mechanisms. In the linear mechanism, Erk activates Notch2 signaling by
initiating Dll1 expression. In the parallel mechanism, Erk and Notch2 independently activate the same
downstream targets genes for tendon fate including Scx. Completion of these aims will reveal a developmental
mechanism that establishes a gradient of skeletogenic cell types in tendon-bone attachments of the jaw.
Knowledge gained will guide future developmentally inspired strategies for jaw attachment repair and may
inform how jaw abnormalities develop in the FGFR2-and NOTCH2- related congenital disorders.
项目概要/摘要
下巴与周围肌肉组织的整合对于言语和咀嚼至关重要。一个
颌骨整合的基本步骤始于发育,形成稳定的腱骨附着物
按区域组织成肌腱、纤维软骨、矿化纤维软骨和骨。梯度为
附着内的成骨细胞类型源自附着祖细胞(AP),其通过不清楚
机制,解释软骨形成与肌腱信号传导以获得沿着肌腱的不同细胞命运
骨轴。我们对下颌的 AP 知之甚少,与肢体和躯干的 AP 不同,它是
源自神经嵴细胞(NCC)。这项研究测试了下颌 AP 分化成梯度的观点
通过一系列由 NCC 特定机制调节的二元开关来控制成骨细胞类型。
我们发现下巴 AP 表达 Scx、Runx2 和 Sox9 的分级水平,具体取决于它们在
腱骨轴。我们还发现,在 AP 分化过程中,一种新的中间体 Scx+/Runx2+
人口出现。在 Runx2+/- 小鼠中,这种中间群体无法形成,AP 分化为
软骨/骨上的肌腱。虽然这表明三能 AP 通过谱系限制进行分化
中间体,AP如何在空间上解释肌腱与软骨/骨的信号以决定这些细胞的命运
决定以及 AP 是否总是在一种命运或另一种命运之间进行选择(例如肌腱细胞与成骨细胞)或获得
混合特性(例如骨纤维形成)尚不清楚。我们最近表明 Fgf-Notch 信号轴是
沿肌腱-骨界面局部部署,促进 AP 分化为肌腱
软骨/骨。这种机制似乎是 NCC 特异性的,因为中胚层来源的 AP 中 Fgfr2 的丢失并不影响 NCC 特异性。
改变肢体附着发育。在这项研究中,我们利用小鼠遗传学和尖端基因组学来
测试表明,在 AP 分化过程中,Fgf 和 Notch 信号传导的整合在一系列过程中促进肌腱细胞的命运
通过调节 Scx、Runx2 和 Sox9 转录水平来实现二元开关。在 Aim1 中,我们将使用克隆谱系
追踪和 scRNA-seq 以确定 AP 与骨骼中的成骨细胞之间的谱系关系
腱骨附着。在 Aim2 中,我们将使用条件小鼠遗传学来确定小鼠之间的差异
沿腱骨轴的缺口信号强度改变 AP 细胞的命运决定。在 Aim3 中,我们将使用
结合小鼠遗传学和 CUT&RUN-seq 来测试 Erk 信号传导整合 Fgf 和 Notch
通过线性和并行机制发出信号。在线性机制中,Erk 通过以下方式激活 Notch2 信号传导:
启动 Dll1 表达式。在并行机制中,Erk和Notch2独立激活相同的
下游目标肌腱命运基因,包括 Scx。完成这些目标将揭示出发展
在颌骨腱骨附着处建立成骨细胞类型梯度的机制。
获得的知识将指导未来下颌附件修复的发展策略,并可能
了解 FGFR2 和 NOTCH2 相关先天性疾病中颌骨异常如何发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy E Merrill其他文献
Amy E Merrill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy E Merrill', 18)}}的其他基金
2022 Fibroblast Growth Factors in Development and Disease GRC and GRS
2022 发育和疾病中的成纤维细胞生长因子 GRC 和 GRS
- 批准号:
10462966 - 财政年份:2022
- 资助金额:
$ 45.41万 - 项目类别:
Developmental regulation of tendon-bone connectivity in the jaw
颌骨腱骨连接的发育调节
- 批准号:
10209547 - 财政年份:2021
- 资助金额:
$ 45.41万 - 项目类别:
Developmental regulation of tendon-bone connectivity in the jaw
颌骨腱骨连接的发育调节
- 批准号:
10625493 - 财政年份:2021
- 资助金额:
$ 45.41万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
10021210 - 财政年份:2019
- 资助金额:
$ 45.41万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
8941673 - 财政年份:2015
- 资助金额:
$ 45.41万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
9097692 - 财政年份:2015
- 资助金额:
$ 45.41万 - 项目类别:
Fgf signaling in patterning of the calvarial joints
颅骨关节模式中的 Fgf 信号传导
- 批准号:
10585820 - 财政年份:2015
- 资助金额:
$ 45.41万 - 项目类别:
THE ROLE OF FGFR2 IN PROTEIN SYNTHESIS DURING SKELETAL DEVELOPMENT
FGFR2 在骨骼发育过程中蛋白质合成中的作用
- 批准号:
9304184 - 财政年份:2015
- 资助金额:
$ 45.41万 - 项目类别:
相似国自然基金
骨凝集素通过Piezo1影响软骨细胞机械力感知调控软骨基质降解的机制研究
- 批准号:82302766
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞在前交叉韧带重建术后早期腱骨愈合中的作用及其影响软骨生成的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丝素蛋白水凝胶构象转变微环境的调控及其对干细胞成软骨分化的影响
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
力学负荷通过影响线粒体损伤调节软骨细胞H3K27甲基化在骨关节炎中的作用和机制
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
补肾活血中药萃取物调控蛋白磷酸酶PPM1A去磷酸化Smad2激活TGF-β/PPARγ影响软骨细胞胆固醇代谢延缓OA的作用和机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
REGULATION OF BONE MARROW MESENCHYMAL STEM CELLS BY VCAM1
VCAM1 对骨髓间充质干细胞的调节
- 批准号:
10537391 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Identification of an FGF-regulated signaling center in the Groove of Ranvier that controls longitudinal bone growth.
朗飞沟 (Groove of Ranvier) 中控制纵向骨生长的 FGF 调节信号中心的鉴定。
- 批准号:
10667798 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别: