Engineering biomimetic knee menisci with zonal and anisotropic variations
具有分区和各向异性变化的仿生膝关节半月板工程
基本信息
- 批准号:10425800
- 负责人:
- 金额:$ 0.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAllogenicAmericanAnimalsAnisotropyBiochemicalBiochemistryBiological AssayBiomechanicsBiomimeticsCattleCell Culture TechniquesCellsCharacteristicsChondroitin ABC LyaseClinicalCollagenComplexCytologyDataDisadvantagedEngineeringFutureGenerationsGoalsGrowthHistologyHumanHydrostatic PressureImmunohistochemistryImplantKneeLOXL2 geneLaboratoriesMagnetic Resonance ImagingMechanical StimulationMechanicsMedialMeniscus structure of jointMethodologyMethodsModelingMoldsMolecularMorphologyNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusPathologicPerformancePhasePhenotypePopulationPositioning AttributeProceduresProductionPropertyReactionScanning Electron MicroscopySerologySheepSourceStimulusStressStructure-Activity RelationshipSurgical ModelsSurgical suturesSystemTechniquesTechnologyTestingTimeTissue DonorsTissue EngineeringTissuesTractionTranslationsVariantcellular engineeringdesignimprovedin vitro testingin vivoinnovationlysophosphatidic acidmechanical propertiesmimeticsnovelpreservationrepairedsample fixationscaffoldsuccesssynergismtrait
项目摘要
PROJECT SUMMARY
This proposal aims to tissue engineer an anisotropic neo-meniscus that also captures the regional variations
present in the native tissue. Subsequently, allogeneic neo-meniscal constructs will be implanted in a leporine
model to achieve both meniscus repair and replacement. It is hypothesized that: 1) regionally variant,
anisotropic, meniscus-shaped constructs can be engineered by optimizing cell culture and scaffold-free culture
conditions; 2) the strategic temporal application of multi-level stimuli (at cellular-, molecular-, and construct-
levels) will allow for synergisms across the different levels of action to enhance the functional properties of the
maturing neo-menisci; and 3) allogeneic constructs can be successfully implanted in a leporine model. These
hypotheses will be tested via the following three specific aims: 1) To create an anisotropic neo-meniscus with
regional variations mimicking native tissue; 2) to enhance functional and organizational properties of the neo-
meniscus via multi-level exogenous stimulation synergized by temporal coordination; and 3) to develop
surgical fixation techniques and implant the neo-menisci in the rabbit. Previously, the native meniscus was
found to be highly anisotropic and regionally variant both morphologically and biomechanically, motivating our
current tissue engineering approach to mimic these characteristics. Allogeneic leporine cells will be used to
form organizationally and regionally mimetic neo-meniscal constructs in Aim 1; this goal will be accomplished
via the use of novel spatial and temporally variant seeding techniques. The anisotropic and organizational
properties of the engineered neo-meniscus will then be enhanced by manipulating molecular-, cellular-, and
construct-level targets in Aim 2. Specifically, TGF-β1 and hydrostatic pressure will act on the cellular level to
increase matrix production; lysophosphatidic acid and chondroitinase-ABC will be used to align and compact
the matrix at the molecular level; and meniscus-specific mechanical stimulation will direct anisotropy at the
construct level. In this proposal, to avoid the use of primary cells, we will investigate the use of passaged
allogeneic cells toward in vivo repair and replacement of the meniscus (Aim 3). Upon successful demonstration
of repair/replacement in the leporine model, we will determine methods to likewise expand sheep and human
cells for future studies. This approach seeks to address the issue of tissue scarcity and aims to provide a
solution to the complex problem of meniscus repair and replacement.
项目摘要
该建议旨在组织工程师各向异性的新囊肿,也捕获了区域变化
存在于天然组织中。随后,同种异体新歧视结构将被植入麻木
模型以实现半月板修复和更换。假设:1)区域变体,
各向异性,半月板形构建体可以通过优化细胞培养和无脚手架培养来设计
状况; 2)多级刺激的战略临时应用(在细胞,分子和构造上
级别)将允许在不同级别的作用层面上进行协同作用,以增强
成熟的Neo-Menisci; 3)可以将同种异体构建体成功植入麻风病模型。这些
假设将通过以下三个特定目的进行检验:1)与使用各向异性新杂种一起使用
模仿天然组织的区域变化; 2)增强新的功能和组织特性
通过临时协调协同的多级外源刺激通过多级外源刺激; 3)发展
手术固定技术和植入兔子中的新元学。以前,本地的半月板是
发现在形态和生物力学上都是高度各向异性和区域变体的,激励我们
当前的组织工程方法模仿这些特征。同种异体Lepoline细胞将用于
在AIM 1中形成组织和区域模仿的新阶段构造;这个目标将实现
通过使用新型的空间和暂时变体的播种技术。各向异性和组织
然后,通过操纵分子 - ,细胞和
AIM 2中的构造水平目标。具体来说,TGF-β1和静水压力将作用于细胞水平
增加基质产生;溶血磷脂酸和软骨蛋白酶-ABC将用于对齐和紧凑
分子水平的基质;和半月板特异性的机械刺激将指导各向异性
构造水平。在此提案中,为避免使用主要单元,我们将调查使用的使用
同种异体细胞朝体内修复和弯月面的替换(AIM 3)。成功演示
Lepoline模型中的维修/替代品,我们将确定同样扩展绵羊和人类的方法
细胞进行未来的研究。这种方法旨在解决组织稀缺问题,并旨在提供
解决半月板修复和更换的复杂问题。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling.
- DOI:10.1016/j.actbio.2020.04.019
- 发表时间:2020-06
- 期刊:
- 影响因子:9.7
- 作者:Gonzalez-Leon EA;Bielajew BJ;Hu JC;Athanasiou KA
- 通讯作者:Athanasiou KA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyriacos A Athanasiou其他文献
Characterization of the temporomandibular joint disc complex in the Yucatan minipig.
尤卡坦小型猪颞下颌关节盘复合体的特征。
- DOI:
10.1089/ten.tea.2023.0011 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Donahue;Eston G Kallins;Jerry C. Hu;Kyriacos A Athanasiou - 通讯作者:
Kyriacos A Athanasiou
Adult dermal stem cells for scaffold-free cartilage tissue engineering - exploration of strategies.
用于无支架软骨组织工程的成体真皮干细胞——策略探索。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
N. Vapniarsky;H. Kwon;N. Paschos;A. Haudenschild;W. E. Brown;Gayson DuRaine;Jerry C. Hu;Kyriacos A Athanasiou - 通讯作者:
Kyriacos A Athanasiou
Mechanical Evaluation of Commercially Available Fibrin Sealants for Cartilage Repair.
用于软骨修复的市售纤维蛋白密封剂的机械评估。
- DOI:
10.1177/19476035231163273 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Arya Amirhekmat;W. E. Brown;E. Y. Salinas;Jerry C. Hu;Kyriacos A Athanasiou;Dean Wang - 通讯作者:
Dean Wang
Kyriacos A Athanasiou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyriacos A Athanasiou', 18)}}的其他基金
Engineering biomimetic knee menisci with zonal and anisotropic variations
具有分区和各向异性变化的仿生膝关节半月板工程
- 批准号:
10199936 - 财政年份:2017
- 资助金额:
$ 0.27万 - 项目类别:
Engineering biomimetic knee menisci with zonal and anisotropic variations
具有分区和各向异性变化的仿生膝关节半月板工程
- 批准号:
9755363 - 财政年份:2017
- 资助金额:
$ 0.27万 - 项目类别:
Self-assembling process in tissue engineering of articular cartilage
关节软骨组织工程中的自组装过程
- 批准号:
9755352 - 财政年份:2017
- 资助金额:
$ 0.27万 - 项目类别:
Self-assembling process in tissue engineering of articular cartilage
关节软骨组织工程中的自组装过程
- 批准号:
9269147 - 财政年份:2015
- 资助金额:
$ 0.27万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
- 批准号:82372389
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别: