Engineering biomimetic knee menisci with zonal and anisotropic variations
具有分区和各向异性变化的仿生膝关节半月板工程
基本信息
- 批准号:10425800
- 负责人:
- 金额:$ 0.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAllogenicAmericanAnimalsAnisotropyBiochemicalBiochemistryBiological AssayBiomechanicsBiomimeticsCattleCell Culture TechniquesCellsCharacteristicsChondroitin ABC LyaseClinicalCollagenComplexCytologyDataDisadvantagedEngineeringFutureGenerationsGoalsGrowthHistologyHumanHydrostatic PressureImmunohistochemistryImplantKneeLOXL2 geneLaboratoriesMagnetic Resonance ImagingMechanical StimulationMechanicsMedialMeniscus structure of jointMethodologyMethodsModelingMoldsMolecularMorphologyNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusPathologicPerformancePhasePhenotypePopulationPositioning AttributeProceduresProductionPropertyReactionScanning Electron MicroscopySerologySheepSourceStimulusStressStructure-Activity RelationshipSurgical ModelsSurgical suturesSystemTechniquesTechnologyTestingTimeTissue DonorsTissue EngineeringTissuesTractionTranslationsVariantcellular engineeringdesignimprovedin vitro testingin vivoinnovationlysophosphatidic acidmechanical propertiesmimeticsnovelpreservationrepairedsample fixationscaffoldsuccesssynergismtrait
项目摘要
PROJECT SUMMARY
This proposal aims to tissue engineer an anisotropic neo-meniscus that also captures the regional variations
present in the native tissue. Subsequently, allogeneic neo-meniscal constructs will be implanted in a leporine
model to achieve both meniscus repair and replacement. It is hypothesized that: 1) regionally variant,
anisotropic, meniscus-shaped constructs can be engineered by optimizing cell culture and scaffold-free culture
conditions; 2) the strategic temporal application of multi-level stimuli (at cellular-, molecular-, and construct-
levels) will allow for synergisms across the different levels of action to enhance the functional properties of the
maturing neo-menisci; and 3) allogeneic constructs can be successfully implanted in a leporine model. These
hypotheses will be tested via the following three specific aims: 1) To create an anisotropic neo-meniscus with
regional variations mimicking native tissue; 2) to enhance functional and organizational properties of the neo-
meniscus via multi-level exogenous stimulation synergized by temporal coordination; and 3) to develop
surgical fixation techniques and implant the neo-menisci in the rabbit. Previously, the native meniscus was
found to be highly anisotropic and regionally variant both morphologically and biomechanically, motivating our
current tissue engineering approach to mimic these characteristics. Allogeneic leporine cells will be used to
form organizationally and regionally mimetic neo-meniscal constructs in Aim 1; this goal will be accomplished
via the use of novel spatial and temporally variant seeding techniques. The anisotropic and organizational
properties of the engineered neo-meniscus will then be enhanced by manipulating molecular-, cellular-, and
construct-level targets in Aim 2. Specifically, TGF-β1 and hydrostatic pressure will act on the cellular level to
increase matrix production; lysophosphatidic acid and chondroitinase-ABC will be used to align and compact
the matrix at the molecular level; and meniscus-specific mechanical stimulation will direct anisotropy at the
construct level. In this proposal, to avoid the use of primary cells, we will investigate the use of passaged
allogeneic cells toward in vivo repair and replacement of the meniscus (Aim 3). Upon successful demonstration
of repair/replacement in the leporine model, we will determine methods to likewise expand sheep and human
cells for future studies. This approach seeks to address the issue of tissue scarcity and aims to provide a
solution to the complex problem of meniscus repair and replacement.
项目概要
该提案旨在组织工程各向异性新半月板,该新半月板也能捕获区域差异
随后,同种异体新半月板结构将被植入兔体内。
该模型同时实现半月板修复和置换,其特点是:1)区域差异,
可以通过优化细胞培养和无支架培养来设计各向异性的弯月形结构
条件;2)多层次刺激的策略性时间应用(在细胞、分子和结构上)
水平)将允许不同水平的行动之间的协同作用,以增强
成熟的新半月板;3)同种异体构建体可以成功植入兔动物模型。
假设将通过以下三个具体目标进行测试:1)创建各向异性新半月板
区域模仿天然组织;2)增强新组织的功能和组织差异
通过时间协调协同的多层次外源刺激来发育半月板;
手术固定技术并在兔子体内植入新半月板。
发现在形态和生物力学上都具有高度各向异性和区域变异性,这激发了我们
目前的组织工程方法将用于模仿这些特征。
在目标 1 中形成组织和区域模仿的新半月板结构,这一目标将得以实现;
通过使用新颖的空间和时间变异播种技术。
工程化的新半月板的特性将通过操纵分子、细胞和
目标 2 中的构建水平目标。具体而言,TGF-β1 和静水压将作用于细胞水平
增加基质产量;溶血磷脂酸和软骨素酶-ABC将用于排列和压实
分子水平的基质;半月板特异性机械刺激将引导各向异性
在本提案中,为了避免使用原代细胞,我们将研究传代细胞的使用。
同种异体细胞用于半月板的体内修复和替换(目标 3)。
对于兔模型中的修复/替换,我们将确定类似地扩展绵羊和人类的方法
这种方法旨在解决组织稀缺的问题,并旨在提供一种
解决复杂的半月板修复和更换问题。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling.
- DOI:10.1016/j.actbio.2020.04.019
- 发表时间:2020-06
- 期刊:
- 影响因子:9.7
- 作者:Gonzalez-Leon EA;Bielajew BJ;Hu JC;Athanasiou KA
- 通讯作者:Athanasiou KA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyriacos A Athanasiou其他文献
Characterization of the temporomandibular joint disc complex in the Yucatan minipig.
尤卡坦小型猪颞下颌关节盘复合体的特征。
- DOI:
10.1089/ten.tea.2023.0011 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Donahue;Eston G Kallins;Jerry C. Hu;Kyriacos A Athanasiou - 通讯作者:
Kyriacos A Athanasiou
Mechanical Evaluation of Commercially Available Fibrin Sealants for Cartilage Repair.
用于软骨修复的市售纤维蛋白密封剂的机械评估。
- DOI:
10.1177/19476035231163273 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Arya Amirhekmat;W. E. Brown;E. Y. Salinas;Jerry C. Hu;Kyriacos A Athanasiou;Dean Wang - 通讯作者:
Dean Wang
Adult dermal stem cells for scaffold-free cartilage tissue engineering - exploration of strategies.
用于无支架软骨组织工程的成体真皮干细胞——策略探索。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
N. Vapniarsky;H. Kwon;N. Paschos;A. Haudenschild;W. E. Brown;Gayson DuRaine;Jerry C. Hu;Kyriacos A Athanasiou - 通讯作者:
Kyriacos A Athanasiou
Kyriacos A Athanasiou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyriacos A Athanasiou', 18)}}的其他基金
Engineering biomimetic knee menisci with zonal and anisotropic variations
具有分区和各向异性变化的仿生膝关节半月板工程
- 批准号:
10199936 - 财政年份:2017
- 资助金额:
$ 0.27万 - 项目类别:
Engineering biomimetic knee menisci with zonal and anisotropic variations
具有分区和各向异性变化的仿生膝关节半月板工程
- 批准号:
9755363 - 财政年份:2017
- 资助金额:
$ 0.27万 - 项目类别:
Self-assembling process in tissue engineering of articular cartilage
关节软骨组织工程中的自组装过程
- 批准号:
9755352 - 财政年份:2017
- 资助金额:
$ 0.27万 - 项目类别:
Self-assembling process in tissue engineering of articular cartilage
关节软骨组织工程中的自组装过程
- 批准号:
9269147 - 财政年份:2015
- 资助金额:
$ 0.27万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 0.27万 - 项目类别: