Accuracy and Precision in CT Quantification of COPD Through Virtual Imaging Trials
通过虚拟成像试验对 COPD 进行 CT 定量的准确性和精确度
基本信息
- 批准号:10298963
- 负责人:
- 金额:$ 44.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnatomyArtificial IntelligenceBiological MarkersCause of DeathChronic Obstructive Airway DiseaseCommunitiesComparative StudyComplementComplexComputed Tomography ScannersComputer ModelsCoupledDataData SetDensitometryDiagnosisDiagnosticDiagnostic ProcedureDiseaseDisease modelEffectivenessEnvironmental Risk FactorEvaluationExposure toGoalsImageInterstitial Lung DiseasesLibrariesLongitudinal StudiesLungLung diseasesMagnetic Resonance ImagingMeasurementMethodsModalityModelingMonitorPatient imagingPatientsPhotonsPhysiologyPositioning AttributePrevalenceProtocols documentationProviderPulmonary EmphysemaRadiation exposureRecording of previous eventsReportingReproducibilityResearchResolutionRoleSeveritiesSeverity of illnessSmokingSpirometryStructureSymptomsSystemTechnologyTimeTubeVariantX-Ray Computed Tomographybasecohortdisease diagnosishuman modelimage processingimaging biomarkerimprovedin silicoin vivoinsightintelligent algorithmquantitative imagingradiation absorbed dosereconstructiontoolvirtualvirtual imagingvirtual patientvoltage
项目摘要
Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of death. Increasing in prevalence, COPD
is a major burden to patients and providers. Computed tomography (CT) can provide valuable information
about the structural and functional abnormalities of the disease as demonstrated in numerous studies where
quantitative CT is deployed to characterize and evaluate the treatment. For instance, the COPDGene study
has recently shown the substantial role of quantitative CT in the redefinition of COPD diagnosis, and in
evaluating the progression of emphysema over time. However, these biomarkers vary across different
scanners, settings, and patient attributes. There is a crucial need to manage this variability by optimizing and
harmonizing CT images for reliable biomarker quantifications across both current and emerging scanners.
This goal is not possible through conventional methods of using physical phantoms or patient images. Physical
phantoms are often oversimplified and not representative of the complex anatomy and physiology of COPD
patients. Patient images are ground-truth-limited, i.e., the exact anatomy and physiology of the patient is not
fully known. Further, patient-based comparisons require multiple acquisitions of the same subjects across
different scanners and settings. This is not ethically possible since repeated imaging increases the absorbed
radiation dose. These challenges can be overcome through the use of virtual imaging trials (VITs) where
studies are performed in silico using computational models of patients and scanners. VITs can provide reliable
and practical solution to the challenge of COPD imaging provided realistic models of patients and scanners.
Such models are currently lacking in the context of COPD.
We develop and then utilize realistic virtual imaging toolsets to systematically evaluate and optimize CT
biomarkers in COPD patients across scanners, imaging parameters, and patient attributes. We develop the
first library of realistic COPD patient models with diverse attributes and severities. Coupled with accurate
models of different scanners, the phantoms will be used to generate sets of ground-truth-known virtual CT
cases, to be disseminated to the research community and to be used to systematically evaluate the effects of
current and emerging scanners, various patient attributes, and the effects of image processing algorithms
(through a national challenge), on the accuracy and precision of COPD biomarkers. Further, we develop and
optimize a truth-based artificial intelligence-based algorithm for COPD quantifications. We optimize the
algorithm for accuracy and reproducibility, taking advantage of the ground-truth known simulated images
. We
then harmonize CT settings across different scanners to accurately and precisely assess COPD imaging
biomarkers for both single time-point and longitudinal studies.
The studies will be done for the top two image
processing algorithms, identified in the challenge, as well as our developed algorithm. Through these efforts,
the project will position CT as a more reliable method for improved characterization and monitoring of COPD.
慢性阻塞性肺疾病(COPD)是导致死亡的主要原因。慢性阻塞性肺病(COPD)患病率增加
是患者和提供者的主要负担。计算机断层扫描 (CT) 可以提供有价值的信息
大量研究表明该疾病的结构和功能异常
采用定量 CT 来表征和评估治疗。例如,COPDGene 研究
最近显示定量 CT 在重新定义 COPD 诊断中的重要作用
评估肺气肿随时间的进展。然而,这些生物标志物因不同的情况而异。
扫描仪、设置和患者属性。迫切需要通过优化和管理这种可变性
协调 CT 图像,以在当前和新兴扫描仪中实现可靠的生物标志物量化。
通过使用物理模型或患者图像的传统方法无法实现这一目标。身体的
体模往往过于简单化,不能代表 COPD 复杂的解剖学和生理学
患者。患者图像受到真实情况的限制,即患者的确切解剖结构和生理学情况并不准确
完全知道。此外,基于患者的比较需要对同一受试者进行多次采集
不同的扫描仪和设置。这在伦理上是不可能的,因为重复成像会增加吸收
辐射剂量。这些挑战可以通过使用虚拟成像试验 (VIT) 来克服,其中
研究是使用患者和扫描仪的计算模型在计算机上进行的。 VIT 可以提供可靠的
针对慢性阻塞性肺病成像挑战的实用解决方案提供了患者和扫描仪的真实模型。
目前在慢性阻塞性肺病的背景下缺乏这样的模型。
我们开发并利用逼真的虚拟成像工具集来系统地评估和优化 CT
COPD 患者的生物标志物包括扫描仪、成像参数和患者属性。我们开发的
第一个具有不同属性和严重程度的真实 COPD 患者模型库。再加上精准的
不同扫描仪的模型,模型将用于生成一组真实已知的虚拟 CT
案例,传播给研究界并用于系统评估
当前和新兴的扫描仪、各种患者属性以及图像处理算法的效果
(通过全国挑战),关于慢性阻塞性肺病生物标志物的准确性和精密度。此外,我们开发并
优化基于事实的人工智能算法,用于 COPD 量化。我们优化了
算法的准确性和可重复性,利用已知的真实模拟图像
。我们
然后协调不同扫描仪的 CT 设置,以准确、精确地评估 COPD 成像
用于单时间点和纵向研究的生物标志物。
研究将对前两张图像进行
挑战中确定的处理算法以及我们开发的算法。通过这些努力,
该项目将 CT 定位为一种更可靠的方法,可改善 COPD 的表征和监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ehsan Abadi其他文献
Ehsan Abadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ehsan Abadi', 18)}}的其他基金
Accuracy and Precision in CT Quantification of COPD Through Virtual Imaging Trials
通过虚拟成像试验对 COPD 进行 CT 定量的准确性和精确度
- 批准号:
10640999 - 财政年份:2021
- 资助金额:
$ 44.72万 - 项目类别:
Accuracy and Precision in CT Quantification of COPD Through Virtual Imaging Trials
通过虚拟成像试验对 COPD 进行 CT 定量的准确性和精确度
- 批准号:
10435577 - 财政年份:2021
- 资助金额:
$ 44.72万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
- 批准号:
10818941 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别: