Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
基本信息
- 批准号:10228665
- 负责人:
- 金额:$ 53.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelArchitectureBacteriaBehaviorBiochemicalBiochemical GeneticsBiological ClocksBiological ModelsBreadCardiovascular DiseasesCell physiologyCircadian DysregulationCircadian RhythmsDiseaseEnsureFeedbackGenesGenetic TranscriptionGoalsHourHumanImmune systemInvestigationLife StyleLinkMalignant NeoplasmsMapsMedicalMental disordersModelingModernizationMoldsMolecular ConformationMusNatureNeurospora crassaOutputPhasePhysiologicalPhysiologyPlayPopulationPost-Transcriptional RegulationProteinsProteomeRegulationReproducibilityRiskRoleSleepTimeTranslationsWorkarmbasecircadiancircadian regulationcostfitnessflexibilitygenetic manipulationinsightluminescencemacrophagemolecular clocknovelpromoterprotein protein interactiontherapeutic effectivenesstranscriptome
项目摘要
Project Summary/Abstract:
Circadian rhythms are highly conserved, roughly 24-hour, physiological cycles that adjust innumerable
actions, affecting everything from luminescence in bacteria to sleep in humans. Through the ideal programming
of behavior, it is believed that these rhythms enhance fitness by ensuring that many organismal functions are
optimally synchronized with the appropriate phase of the circadian day. Disruption of proper circadian timing
negatively impacts the human long-term medical outlook, making it critical to understand the mechanism
underlying circadian regulation over cellular physiology. Circadian rhythms are controlled via a highly-regulated
transcription-translation based negative feedback loop, or clock. The current paradigm for clock regulation over
cellular physiology is that transcriptional activity from the positive arm of the transcription–translation negative
feedback loop drives the expression of a host of gene promoters that modulate organismal behavior. However,
mounting evidence suggests that circadian regulation is imparted on cellular physiology beyond the level of
transcription and that the negative arm may play a role in this regulation. The long-term goal of our work is to
determine the extent of this post-transcriptional regulation on cellular physiology and to identify the mechanistic
underpinnings of circadian post-transcriptional regulation.
As a mechanism for keeping time, transcription–translation negative feedback loops are highly conserved
and much of what is understood about the molecular clock comes from the investigation of model systems.
Therefore, we will exploit the simplicity and reproducibility of model systems to cost-effectively address our
hypotheses. To determine the extent of circadian post-transcriptional regulation, we will analyze the
transcriptome and proteome of murine macrophages over circadian time. As mice are a common model for the
human immune system, our study will garner insights into both the extent of circadian post-transcriptional
regulation as well as investigate clock regulation on the immune system. To tackle the mechanistic underpinnings
of post-transcriptional regulation, we will utilize Neurospora crassa, a bread mold whose ease of biochemical
and genetic manipulation is unparalleled in any other eukaryotic clock model system. We hypothesize that the
negative arm may control circadian output via transient protein-protein interactions, which are synchronized by
timed conformational changes that are enabled by the negative arm’s inherently flexible biochemical nature. We
will create a Conformational/Temporal Interactome (CTI) map of circadian negative arm proteins to validate our
hypothesis. Due to the conservation of clock architecture, the results of this work have the potential to define
several novel and unrecognized paradigms in clock regulation over cellular physiology.
项目摘要/摘要:
昼夜节律高度保守,大约 24 小时,生理周期调整无数
通过理想的编程,影响从细菌的发光到人类的睡眠等一切行为。
人们相信,这些节律通过确保许多生物功能得到发挥来增强健康。
与昼夜节律的适当阶段最佳同步 破坏适当的昼夜节律计时。
对人类长期医学前景产生负面影响,因此了解其机制至关重要
细胞生理学的基本昼夜节律是通过高度调节的来控制的。
基于转录翻译的负反馈环路或时钟当前的时钟调节范例。
细胞生理学是,转录活性来自转录-翻译负臂的正臂
反馈环路驱动一系列调节生物行为的基因启动子的表达。
越来越多的证据表明,昼夜节律调节对细胞生理学的影响超出了
转录并且负臂可能在这种调节中发挥作用。我们工作的长期目标是
确定这种转录后调节对细胞生理学的程度并确定其机制
昼夜节律转录后调节的基础。
作为一种保持时间的机制,转录-翻译负反馈环路是高度保守的
关于分子钟的大部分了解都来自对模型系统的研究。
因此,我们将利用模型系统的简单性和可重复性来经济有效地解决我们的问题
为了确定昼夜节律转录后调节的程度,我们将分析
小鼠巨噬细胞在昼夜节律中的转录组和蛋白质组,因为小鼠是常见的模型。
人类免疫系统,我们的研究将深入了解昼夜节律转录后的程度
调节并研究免疫系统的时钟调节,以解决其机制基础。
为了实现转录后调控,我们将利用粗糙脉孢菌(Neurospora crassa),这是一种面包霉菌,其易于生化
并且遗传操作是任何其他真核生物钟模型系统都无法比拟的。
负臂可以通过短暂的蛋白质-蛋白质相互作用来控制昼夜节律输出,这些相互作用通过
由负臂固有的灵活生化性质实现的定时构象变化。
将创建昼夜节律负臂蛋白的构象/时间相互作用组(CTI)图来验证我们的
由于时钟架构的守恒,这项工作的结果有可能定义。
细胞生理学时钟调节中的几种新颖且未被认识的范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Hurley其他文献
Jennifer Hurley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Hurley', 18)}}的其他基金
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
- 批准号:
10621067 - 财政年份:2018
- 资助金额:
$ 53.26万 - 项目类别:
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
- 批准号:
10372273 - 财政年份:2018
- 资助金额:
$ 53.26万 - 项目类别:
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
- 批准号:
10454368 - 财政年份:2018
- 资助金额:
$ 53.26万 - 项目类别:
The FRH DEXH box helicase: analysis of a core component of the Neurospora circadi
FRH DEXH 盒式解旋酶:圆脉脉孢菌核心成分的分析
- 批准号:
8059480 - 财政年份:2011
- 资助金额:
$ 53.26万 - 项目类别:
The FRH DEXH box helicase: analysis of a core component of the Neurospora circadi
FRH DEXH 盒式解旋酶:圆脉脉孢菌核心成分的分析
- 批准号:
8213127 - 财政年份:2011
- 资助金额:
$ 53.26万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 53.26万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 53.26万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 53.26万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 53.26万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 53.26万 - 项目类别: