Investigating a disintegrin and metalloproteinase-mediated Neuropilin 1 cleavage in autoimmune diabetes

研究自身免疫性糖尿病中解整合素和金属蛋白酶介导的 Neuropilin 1 裂解

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Type one diabetes (T1D) is a chronic autoimmune disorder affecting millions worldwide and although insulin replacement therapy is lifesaving, it is not a cure.1 Characterized by immune infiltration into the Islets of Langerhan, T1D is caused by the immune mediated destruction of insulin producing β cells, resulting in an impaired ability to use and store glucose as an energy source. Therefore, immune regulation is vital in the prevention of T1D and particularly, Regulatory T cells (Tregs). Data from our lab and others suggest that Tregs a vital extrinsic mechanism of peripheral tolerance to islet autoantigens, the failure of which results in symptomatic T1D.2–8 This phenomenon is referred to as “Treg insufficiency” and is supported by evidence in both humans and animal models of the disease.9–11 Therefore, a complete understanding of the mechanisms driving the T1D-related Treg insufficiency is critical to the development of novel immunotherapeutic treatments for the disorder. Previously, our lab has demonstrated a role for the transmembrane receptor Neuropilin 1 (Nrp1, or CD304) and its ligand, Semaphorin4a (sema4a), in maintaining Treg stability in the tumor microenvironment.12 Here, we defined Treg stability as sustained function, viability, proliferation, and lineage identity. Taking these results into consideration, along with the knowledge that in humans NRP1 has been mapped to one of the T1D-susceptibility regions, we were interested in investigating the role of Nrp1 in the disease progression of T1D.9,13 Surprisingly, however, Treg-restricted deletion of Nrp1 showed no impact on the disease onset in the non-obese diabetic (NOD) mouse model of autoimmune diabetes. This was attributed to a progressive loss of Nrp1 from the surface of intra-islet Tregs which we found to be metalloprotease mediated. Of note, loss of Nrp1 is specific to intra-islet Tregs. This led us to query Nrp1 loss and, consequently, the development of a fragile Treg phenotype in the islets, as a potential mechanism for Treg insufficiency. The mechanisms promoting this ADAM mediated cleavage in the islets are still unknown, though we propose it to be factors specific to the islet microenvironment since cleavage is specific to the islet microenvironment, such as enhanced intra-islet insulin receptor signaling. We hypothesize that insulin receptor signaling drives cleavage of Nrp1 on intra-islet Tregs, therefore, inducing Treg fragility, and that this fragility can be delayed or prevented by increasing Nrp1 expression on intra-islet Tregs. Specifically, we Aim to (1) investigate the impact of insulin receptor signaling on intra-islet Tregs and to understand if insulin exposure in the islet-microenvironment drives the enhanced metalloprotease mediated elimination of Nrp1.. We also Aim to (2) To investigate if enhanced Nrp1 prevents Treg insufficiency in autoimmune diabetes. Successful completion of this proposal will provide enhanced insight into the role that Treg stability, and loss thereof, plays in T1D and may prove translationally relevant to the treatment of T1D.
项目概要/摘要 一型糖尿病 (T1D) 是一种慢性自身免疫性疾病,影响着全世界数百万人,尽管胰岛素 替代疗法可以挽救生命,但不能治愈。1 其特点是免疫浸润到胰岛 Langerhan 博士认为,T1D 是由免疫介导的产生胰岛素的 β 细胞破坏引起的,导致 使用和储存葡萄糖作为能量来源的能力受损因此,免疫调节对于身体至关重要。 预防 T1D,特别是调节性 T 细胞 (Treg) 我们实验室和其他实验室的数据表明,Treg 细胞。 外周对胰岛自身抗原耐受的重要外在机制,其失败会导致 有症状的 T1D.2–8 这种现象被称为“Treg 不足”,并得到以下证据的支持 该疾病的人类和动物模型。9-11 因此,要全面了解其机制 导致 T1D 相关 Treg 不足对于开发新型免疫治疗方法至关重要 对于紊乱。 此前,我们的实验室已经证明了跨膜受体 Neuropilin 1(Nrp1 或 CD304)和 其配体 Semaphorin4a (sema4a) 可维持肿瘤微环境中 Treg 的稳定性。 12 在这里,我们 将 Treg 稳定性定义为持续功能、活力、增殖和谱系特性。 考虑因素,以及人类 NRP1 已被映射到 T1D 易感性之一的知识 地区,我们有兴趣研究 Nrp1 在 T1D 疾病进展中的作用。9,13 令人惊讶的是, 然而,Treg 限制性 Nrp1 缺失对非肥胖糖尿病患者的疾病发作没有影响 (NOD) 自身免疫性糖尿病小鼠模型,这是由于表面 Nrp1 逐渐丧失所致。 值得注意的是,Nrp1 的丢失是胰岛内特有的。 这导致我们质疑 Nrp1 的丢失以及因此导致的脆弱 Treg 表型的发展。 胰岛,作为 Treg 不足的潜在机制,促进这种 ADAM 介导的机制。 胰岛中的裂解仍然未知,但我们认为这是胰岛微环境特有的因素 因为裂解是胰岛微环境特有的,例如胰岛内胰岛素受体信号传导。 我们认为胰岛素受体信号传导驱动胰岛内 Tregs 上 Nrp1 的裂解,因此, 诱导 Treg 脆性,并且可以通过增加 Nrp1 表达来延迟或预防这种脆性 具体而言,我们的目标是 (1) 研究胰岛素受体信号传导对胰岛内的影响。 Tregs 并了解胰岛微环境中的胰岛素暴露是否会驱动增强的金属蛋白酶 介导的 Nrp1 消除。我们还旨在 (2) 研究增强的 Nrp1 是否可以预防 Treg 不足 该提案的成功完成将加深人们对自身免疫性糖尿病的作用的了解。 Treg 稳定性及其丧失在 T1D 中发挥作用,并且可能证明与 T1D 的治疗具有转化相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Grebinoski其他文献

Stephanie Grebinoski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
  • 批准号:
    10856753
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
Spatial genomic tools to interrogate T cell clonotypes, tumor clones and the microenvironment
用于询问 T 细胞克隆型、肿瘤克隆和微环境的空间基因组工具
  • 批准号:
    10565141
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
Heterogeneity and cellular hierarchy of lung cDC2
肺 cDC2 的异质性和细胞层次
  • 批准号:
    10665348
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
Tyk2 and Associated Cytokines in Salivary Gland Autoimmunity
Tyk2 和唾液腺自身免疫中的相关细胞因子
  • 批准号:
    10733367
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
Immunoregulatory Therapeutics for Ulcerative Colitis
溃疡性结肠炎的免疫调节治疗
  • 批准号:
    10697464
  • 财政年份:
    2023
  • 资助金额:
    $ 4.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了