Human mobility models to forecast disease dynamics and the effectiveness of public health interventions
用于预测疾病动态和公共卫生干预措施有效性的人员流动模型
基本信息
- 批准号:10228957
- 负责人:
- 金额:$ 70.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-09 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAfricaAgeCOVID-19COVID-19 pandemicCommunicable DiseasesCommunitiesContact TracingCountryDataData CollectionData SetData SourcesDengueDimensionsDiseaseDisease OutbreaksEbolaEffectivenessEndemic DiseasesEpidemicEpidemiologyFoundationsFrequenciesFutureGeneticHealth PolicyHouseholdHumanIncidenceIncomeIndividualInfectionInterventionInvestigationMalariaMathematicsMethodologyMethodsModelingMolecularMonitorMovementPathway interactionsPatternPopulationPopulation StudyProcessPropertyPublic HealthResearchResearch Project GrantsResourcesRouteRuralSourceStandardizationStatistical MethodsStructureTestingThailandTimeTravelValidationVariantWorkZIKAbasedata modelingdisease transmissionepidemiologic dataflexibilityhuman modelimprovedindividual variationinfectious disease modellife historylow and middle-income countriesmultiple datasetsnovelpandemic influenzapathogenperformance testspublic health interventionresponsesimulationsociodemographicstransmission processurban area
项目摘要
PROJECT SUMMARY/ABSTRACT
Human mobility underlies infectious disease transmission and determines the spatial-temporal dynamics of
outbreaks and endemic disease dynamics. Yet, we do not understand how best to incorporate individual or
population mobility patterns into models of infectious diseases. Human travel has been successfully incorporated
into models used for planning, surveillance, and reactive responses to influenza pandemics, the COVID-19
pandemic, malaria, and others. However, little validation or comparison of approaches used in these models has
been performed. Further, there has been no systematic investigation of the extent to which the many different
existing sources of human travel data quantify travel patterns, or which descriptions of human mobility are most
relevant to disease processes. The small amount of human mobility data available globally requires
generalization or extrapolation of features of one dataset to another setting, time or circumstance. This
generalization may work for some features of pathogens for a subset of pathogens or transmission routes but
may fail miserably in others. It is unlikely that all travel patterns are relevant for all types of diseases. The life
history of each pathogen, transmission routes, age structure of incidence and outbreak context will all dictate the
importance of specific types of movement. For mobility data to be useful in planning for outbreaks and monitoring
interventions, transmission models utilizing mobility data and models must be confronted with epidemiological
data (including contact tracing, traditional surveillance, and genetic data) from a variety of sources. Here, we
propose to perform the first systematic analysis of existing mobility data and models to identify which models
perform best under multiple assumptions using a range of simulations and data from historic outbreaks. We will
also identify circumstances when generalized models or non-local data are misleading. To do this, we will collate
and standardize a large number of mobility datasets collected by various methods. We will statistically
characterize these datasets to identify sources of variation in human mobility at individual, household,
community, and larger scales. We will develop multiple candidate models describing mobility and incorporate
these candidate models into a range of commonly used models of infectious disease transmission. Proceeding
with the principle that human mobility is only useful to models of infectious diseases if it improves our ability to
recapitulate the dynamics of observed outbreaks, we will test the ability of each of these candidate mobility
models to explain observed patterns of contacts and sequenced pathogens observed in outbreaks of dengue,
Zika, Ebola, and COVID-19. In doing this, we will identify conditions under which human mobility can improve
our understanding of the transmission and pathogens, inform response strategies and create a resource that
can inform responses to multiple current and future outbreaks.
项目概要/摘要
人口流动是传染病传播的基础,决定着传染病的时空动态
暴发和地方病动态。然而,我们不知道如何最好地将个人或
人口流动模式转化为传染病模型。人类出行已成功纳入
纳入用于流感大流行的规划、监测和反应反应的模型中,COVID-19
流行病、疟疾等。然而,很少对这些模型中使用的方法进行验证或比较
已执行。此外,还没有对许多不同的影响程度进行系统的调查。
现有的人类出行数据来源量化了出行模式,或者对人类流动性的描述最
与疾病过程相关。全球范围内可用的少量人员流动数据需要
将一个数据集的特征概括或外推到另一设置、时间或环境。这
概括可能适用于病原体子集或传播途径的病原体的某些特征,但是
在其他人身上可能会惨遭失败。所有旅行模式不太可能与所有类型的疾病相关。生活
每种病原体的历史、传播途径、发病年龄结构和爆发背景都将决定
特定运动类型的重要性。使流动性数据有助于规划疫情和监测
干预措施、利用流动性数据和模型的传播模型必须面对流行病学问题
来自各种来源的数据(包括接触者追踪、传统监测和遗传数据)。在这里,我们
建议对现有移动数据和模型进行首次系统分析,以确定哪些模型
使用一系列模拟和历史爆发数据在多种假设下表现最佳。我们将
还可以识别广义模型或非本地数据产生误导的情况。为此,我们将整理
并对通过各种方法收集的大量移动数据集进行标准化。我们将统计
描述这些数据集的特征,以确定个人、家庭、
社区,以及更大的规模。我们将开发多个描述移动性的候选模型并将
将这些候选模型纳入一系列常用的传染病传播模型中。论文集
原则是,只有当人类流动性提高了我们的能力时,它才对传染病模型有用。
概括观察到的疫情爆发的动态,我们将测试每个候选者的流动能力
用于解释在登革热暴发中观察到的接触模式和测序病原体的模型,
寨卡病毒、埃博拉病毒和 COVID-19。在此过程中,我们将确定可以改善人员流动性的条件
我们对传播和病原体的了解,为应对策略提供信息并创建资源
可以为应对当前和未来的多次疫情提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derek A Cummings其他文献
Derek A Cummings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derek A Cummings', 18)}}的其他基金
Identification of serological markers of protection and risk for dengue vaccines and natural infection
鉴定登革热疫苗和自然感染的保护和风险的血清学标记
- 批准号:
10638037 - 财政年份:2023
- 资助金额:
$ 70.63万 - 项目类别:
Human mobility models to forecast disease dynamics and the effectiveness of public health interventions
用于预测疾病动态和公共卫生干预措施有效性的人员流动模型
- 批准号:
10390412 - 财政年份:2021
- 资助金额:
$ 70.63万 - 项目类别:
Human mobility models to forecast disease dynamics and the effectiveness of public health interventions
用于预测疾病动态和公共卫生干预措施有效性的人员流动模型
- 批准号:
10599117 - 财政年份:2021
- 资助金额:
$ 70.63万 - 项目类别:
LINKING ANTIGENIC & GENETIC VARIATION OF DENGUE TO INDIVIDUAL AND POPULATION RISK
连接抗原
- 批准号:
8801344 - 财政年份:2015
- 资助金额:
$ 70.63万 - 项目类别:
Modeling interactions between HIV interventions in key populations in India
模拟印度重点人群艾滋病毒干预措施之间的相互作用
- 批准号:
8846213 - 财政年份:2015
- 资助金额:
$ 70.63万 - 项目类别:
LINKING ANTIGENIC & GENETIC VARIATION OF DENGUE TO INDIVIDUAL AND POPULATION RISK
连接抗原
- 批准号:
9269963 - 财政年份:2015
- 资助金额:
$ 70.63万 - 项目类别:
LINKING ANTIGENIC & GENETIC VARIATION OF DENGUE TO INDIVIDUAL AND POPULATION RISK
连接抗原
- 批准号:
9012767 - 财政年份:2015
- 资助金额:
$ 70.63万 - 项目类别:
Monitoring cause-specific school absences to estimate influenza transmission in W
监测特定原因的学校缺勤以估计西澳的流感传播情况
- 批准号:
8728607 - 财政年份:2013
- 资助金额:
$ 70.63万 - 项目类别:
Monitoring cause-specific school absences to estimate influenza transmission in W
监测特定原因的学校缺勤以估计西澳的流感传播情况
- 批准号:
9381264 - 财政年份:2013
- 资助金额:
$ 70.63万 - 项目类别:
Monitoring cause-specific school absences to estimate influenza transmission in W
监测特定原因的学校缺勤以估计西澳的流感传播情况
- 批准号:
8632337 - 财政年份:2013
- 资助金额:
$ 70.63万 - 项目类别:
相似国自然基金
非洲猪瘟病毒关键抗原表位筛选和功能验证
- 批准号:32302858
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲猪瘟病毒pS273R通过切割G3BP1调控宿主应激颗粒形成的机制
- 批准号:32302893
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲猪瘟病毒B475L蛋白靶向LMP2抑制抗原递呈的分子机制
- 批准号:32302894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非洲猪瘟病毒pS273R蛋白泛素-蛋白酶体降解途径阻抑机制理性设计其特异性蛋白水解靶向嵌合体的研究
- 批准号:32373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自噬在呋虫胺致非洲爪蟾脂质代谢紊乱中的调控机制研究
- 批准号:42307363
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Interactions of SARS-CoV-2 infection and genetic variation on the risk of cognitive decline and Alzheimer’s disease in Ancestral and Admixed Populations
SARS-CoV-2 感染和遗传变异的相互作用对祖先和混血人群认知能力下降和阿尔茨海默病风险的影响
- 批准号:
10628505 - 财政年份:2023
- 资助金额:
$ 70.63万 - 项目类别:
Development of an automated, point of care DNA methylation cartridge blood test for colorectal cancer detection in LMICs- an academic-industrial partnership
开发用于中低收入国家结直肠癌检测的自动化护理点 DNA 甲基化盒血液检测 - 学术与工业合作伙伴关系
- 批准号:
10635412 - 财政年份:2023
- 资助金额:
$ 70.63万 - 项目类别:
Impact of gestational SARS-CoV-2 and maternal inflammation on child growth and neurodevelopment in a malaria-endemic setting
疟疾流行环境中妊娠期 SARS-CoV-2 和母体炎症对儿童生长和神经发育的影响
- 批准号:
10722878 - 财政年份:2023
- 资助金额:
$ 70.63万 - 项目类别:
COVID Transmission and Morbidity in Malawi (COVID-TMM)
马拉维的新冠病毒传播和发病率 (COVID-TMM)
- 批准号:
10467335 - 财政年份:2022
- 资助金额:
$ 70.63万 - 项目类别:
CoVPN 3003 A Phase 3 Study to Assess the Efficacy and Safety of Ad26.COV2.S for the Prevention of SARS-CoV-2-mediated COVID-19 in Adults Aged 18 Years and Older LC 3
CoVPN 3003 评估 Ad26.COV2.S 在 18 岁及以上成年人中预防 SARS-CoV-2 介导的 COVID-19 的功效和安全性的 3 期研究 LC 3
- 批准号:
10570748 - 财政年份:2022
- 资助金额:
$ 70.63万 - 项目类别: