Preclinical development of biological pacemakers
生物起搏器的临床前开发
基本信息
- 批准号:10231051
- 负责人:
- 金额:$ 13.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAnimal ModelArrhythmiaAtrioventricular BlockAttenuatedAutonomic nervous systemBiological PacemakersBiological TestingBradyarrhythmiasCardiacCardiac MyocytesCardiomyopathiesCathetersCell physiologyCellsCellular MorphologyChestChronicClinicClinicalDataDevicesDominant-Negative MutationElectronicsEngineeringEvaluationFamily suidaeFunctional disorderGene ExpressionGenesGoalsHeart BlockHeart RateHeart failureImplantInfectionInjectionsIon ChannelLeadLeftLeft Ventricular FunctionMagnetic Resonance ImagingMapsMeasuresMental DepressionMentorsMethodsModelingMolecularOutcomePatientsPharmacologyPhysical activityPhysiologicalPlacebosPopulationPre-Clinical ModelResearch ProposalsRiskSafetySinoatrial NodeSiteSomatic Gene TherapySystemTechniquesTestingTherapeutic AgentsTimeTranslationsVentricularVentricular Remodelingbasechronotropiccircadiandesignelectronic pacemakerfirst-in-humanheart functionheart rate monitorheart rate variabilityheart rhythmimplantationin vivominimally invasivenodal myocyteoverexpressionporcine modelpre-clinicalpreclinical developmentpreventprogramsresponsestressortherapeutic candidatetranscription factor
项目摘要
Abstract: Chronic right ventricular (RV) pacing can cause RV pacing-induced cardiomyopathy (RPVIC).
Approximately 20% of patients paced from the RV apex develop RVPIC, with a dramatic depression of systolic
function. Symptomatic heart failure is not infrequent, and long-term outcomes are poor. Clearly, alternatives to
RV pacing are desirable, but there are no validated preclinical models of RVPIC to help understand mechanisms
and to guide therapy. Here we seek to validate a non-tachycardic pacing model of RVPIC in a porcine model of
complete heart block, and to use this model to test biological pacemakers (BioP). Gene-based BioP were first
described more than a decade ago; somatic gene transfer of various constructs (a dominant-negative mutant of
the inward rectifier channel [Kir2.1AAA], wild-type HCN channels, and a transcription factor [Tbx18]) have all
been shown to create BioP activity. However, until recently, in vivo preclinical applications have been mostly
limited to highly-invasive open-chest models. We have developed a clinically-realistic minimally-invasive delivery
technique and used it to create BioP in a porcine model of complete heart block. Here, we propose to use this
approach to compare two “finalist” therapeutic candidates with fundamentally different mechanisms of action.
The first one is a wild-type ion channel (HCN2) that artificially induces automaticity in ventricular cardiomyocytes
by functional re-engineering. The goal is not to create a faithful replica of a pacemaker cell, but rather to
manipulate a single component of the membrane channel repertoire so as to induce spontaneous firing in an
excitable but normally-quiescent cell. The active principle of the second therapeutic candidate, Tbx18,
reprograms ventricular cardiomyocytes into sinoatrial node (SAN)-like pacemaker cells (induced SAN [iSAN]
cells). No one determinant of excitability is selectively over-expressed: the entire gene expression program is
altered, with resultant changes in fundamental cell physiology and morphology. This proposal utilizes the above
mentioned percutaneous delivery method to reduce to refine and validate, in a large-animal model of RVPIC,
the approaches required for translation to the clinic. We will characterize and compare the pacing efficacy and
safety of HCN2 and Tbx18-derived BioP, testing the hypothesis that iSAN cells will provide superior chronotropic
support as compared to HCN2. Once designating the most promising therapeutic candidate, we will then test
the utility of BioP in the setting of RVPIC. We hypothesize that restoring antegrade conduction by his-bundle
pacing with a BioP can attenuate or reverse the adverse ventricular remodeling associated with right ventricular
pacing. This research proposal is designed to lay the pre-clinical groundwork for testing of an optimized BioP in
patients at risk for RVPIC.
摘要:慢性右心(RV)起搏会导致RV起搏引起的心肌病(RPVIC)。
大约20%的从RV Apex节奏的患者发生RVPIC,系统急剧抑郁症
功能
RV起搏是设计
为了指导治疗。
完整的心脏障碍,并使用此模型测试生物起搏器(Biop)。
十多年前描述了各种构造的体细胞基因转移
内向整流器通道[KIR2.1AAA],野生型HCN通道和转录因子[TBX18]
但是,直到最近,都会产生生物活动
仅限于高度侵入性的开胸模型。
技术并用它在完整心脏块的猪模型中创建了Biop。
将两个“决赛选手”治疗候选者与基本不同的作用机理进行比较的方法。
第一个I野生型离子通道(HCN2)人为地诱导腹心肌心肌细胞自动化
通过功能重新设计。
操纵膜通道库的单个组成部分,以诱导自发性
可激发但正常的细胞。
重新签名将心室心肌细胞置于促源节点样的起搏器细胞(诱导的SAN [ISAN])
细胞)。
改变,导致基本细胞生理和形态的变化。
提到的经皮递送方法是在大型的RVPIC模型中简化和验证
转化为诊所所需的方法。
HCN2和TBX18衍生的Biop的安全性,检验了Isan细胞将提供高表现的假设
与HCN2相比,一旦指定了最有前途的治疗候选者
在RVPIC的环境中,Biop的效用。
使用Biop起搏可以衰减或逆转与右心右心室相关的不良心室重塑
起搏。
有RVPIC风险的患者。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James F. Dawkins其他文献
James F. Dawkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James F. Dawkins', 18)}}的其他基金
Biological substrate modification to suppress ventricular arrhythmias in a porcine model of chronic ischemic cardiomyopathy
生物底物修饰抑制慢性缺血性心肌病猪模型中的室性心律失常
- 批准号:
10504866 - 财政年份:2022
- 资助金额:
$ 13.52万 - 项目类别:
Biological substrate modification to suppress ventricular arrhythmias in a porcine model of chronic ischemic cardiomyopathy
生物底物修饰抑制慢性缺血性心肌病猪模型中的室性心律失常
- 批准号:
10693972 - 财政年份:2022
- 资助金额:
$ 13.52万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
- 批准号:82373570
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 13.52万 - 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 13.52万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 13.52万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 13.52万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 13.52万 - 项目类别: