Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
基本信息
- 批准号:10402773
- 负责人:
- 金额:$ 38.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlginatesAreaBeta CellC57BL/6 MouseCanis familiarisCell SurvivalCell TransplantationCell physiologyCellsChemistryClinicalDevelopmentDevicesDiabetic mouseDiffusionDonor personEncapsulatedEngineeringEventFailureFamily suidaeFiberFibrosisForcepGlucoseGoalsHumanHydrogelsImmuneImmune systemImmunocompetentInfusion proceduresInjectionsInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of Langerhans TransplantationLaparoscopic Surgical ProceduresMechanicsMetabolicMicrocapsules drug delivery systemMusNanoporousNeonatalNutrientOutcomeOxygenPainPatientsPersonsPolymersProceduresPropertyRattusReportingReproducibilityResearchRetrievalRiskSCID Beige MouseSafetyScientistSourceStreptozocinStructureSupport SystemSurfaceSurgeonSurgical suturesSystemTestingTherapeutic EffectThinnessTimeTransplantationVertebral columnWorkbasebiomaterial compatibilitycanine modelcell replacement therapyclinical applicationclinically relevantclinically translatabledesigndiabeticexperienceexperimental studyhuman embryonic stem cellhuman stem cellsimplantationinnovationinterestisletislet stem cellsmedical complicationminimally invasivemouse modelnovelscale upstemstem cellstranslational potentialtransplant modelwasting
项目摘要
The objective of this project is to develop an advanced, clinically applicable islet/stem cell
encapsulation system for type 1 diabetes (T1D). Cell encapsulation and transplantation holds
enormous potential to treat T1D. Islets of allo or xeno origin or stem cell-derived beta cells are
encapsulated in a material or device that protects the cells from host immune rejection while
allowing facile mass transfer to maintain their survival and function. Numerous research groups
worldwide have made important progress, but clinical application of cell encapsulation has
remained elusive, due in a large part to the lack of a translatable encapsulation system that
meets the following basic but critical clinical needs: (1) It must be easy to handle, use and
transplant so that the encapsulation causes no harm to cells and the transplantation is minimally
invasive; (2) It must have sufficient biocompatibility (i.e. minimal or no formation of fibrosis),
robust mechanical stability and facile mass transfer (e.g. large surface area, short diffusion
distance and controllable permselectivity) so that the transplant can function for a long time, at
least several months; (3) It must be convenient to retrieve so that it can be removed or replaced
in the event of transplant failure or medical complications; (4) It must be scalable so that it can
deliver sufficient cell mass to produce a therapeutic effect. To meet these needs, we propose to
develop a novel, clinically translatable, TRAFFIC (Thread-Reinforced Alginate Fiber For Islet
enCapsulation) system from our newly developed, non-fibrotic zwitterionic-alginates for T1D
treatment. The critical innovations include both the structure design (i.e. incorporation a thin but
tough polymer thread into the center of a hydrogel fiber along its axis) and the hydrogel
chemistry (i.e. zwitterionically modified alginates). The inner polymer thread imparts mechanical
robustness and enables easy handling, implantation and retrieval, while the outer zwitterionic-
alginate hydrogel fiber provides necessary biocompatibility and facile mass transfer. We aim to
achieve long-term (>6 months) cures of diabetic mice using both rat islets and stem cell-derived
beta cells by optimizing the biocompatibility and mass transfer properties of the device. We will
also scale up the device and demonstrate its retrievability and functionality in dogs. The
anticipated outcome of this proposed research will be the development of a new cell
encapsulation system that is translatable for T1D patients.
该项目的目标是开发一种先进的、临床适用的胰岛/干细胞
用于 1 型糖尿病 (T1D) 的封装系统。细胞封装和移植
治疗 T1D 的巨大潜力。同种异体或异种来源的胰岛或干细胞衍生的β细胞
封装在材料或装置中,保护细胞免受宿主免疫排斥,同时
允许轻松的质量转移以维持其生存和功能。众多研究小组
全球范围内已取得重要进展,但细胞封装的临床应用
仍然难以捉摸,很大程度上是由于缺乏可翻译的封装系统
满足以下基本但关键的临床需求:(1)必须易于处理、使用和
移植,使封装不会对细胞造成伤害,并且移植量最小
侵入性; (2) 必须具有足够的生物相容性(即极少形成或不形成纤维化),
强大的机械稳定性和轻松的传质(例如大表面积、短扩散
距离和可控的通透选择性),使移植物能够长时间发挥作用,
至少几个月; (3)必须方便取回,以便拆卸或更换
如果发生移植失败或医疗并发症; (4) 必须具有可扩展性
输送足够的细胞量以产生治疗效果。为了满足这些需求,我们建议
开发一种新型的、临床可转化的 TRAFFIC(用于胰岛的螺纹增强海藻酸盐纤维)
enCapsulation)系统,来自我们新开发的用于 T1D 的非纤维化两性离子海藻酸盐
治疗。关键的创新包括结构设计(即结合一个薄但
坚韧的聚合物沿其轴线进入水凝胶纤维的中心)和水凝胶
化学(即两性离子改性藻酸盐)。内部聚合物螺纹赋予机械性能
坚固耐用,易于处理、植入和取出,而外部两性离子-
海藻酸盐水凝胶纤维提供必要的生物相容性和轻松的传质。我们的目标是
使用大鼠胰岛和干细胞来源实现糖尿病小鼠的长期(>6 个月)治愈
通过优化设备的生物相容性和传质特性来优化β细胞。我们将
还扩大了该设备的规模,并在狗身上展示了它的可回收性和功能。这
这项拟议研究的预期结果将是开发一种新细胞
可用于 T1D 患者的封装系统。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression.
- DOI:10.1126/sciadv.abn0071
- 发表时间:2022-07-22
- 期刊:
- 影响因子:13.6
- 作者:
- 通讯作者:
A Safe, Fibrosis-Mitigating, and Scalable Encapsulation Device Supports Long-Term Function of Insulin-Producing Cells.
- DOI:10.1002/smll.202104899
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Liu W;Flanders JA;Wang LH;Liu Q;Bowers DT;Wang K;Chiu A;Wang X;Ernst AU;Shariati K;Caserto JS;Parker B;Gao D;Plesser MD;Grunnet LG;Rescan C;Pimentel Carletto R;Winkel L;Melero-Martin JM;Ma M
- 通讯作者:Ma M
A predictive computational platform for optimizing the design of bioartificial pancreas devices.
- DOI:10.1038/s41467-022-33760-5
- 发表时间:2022-10-13
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Specialty Tough Hydrogels and Their Biomedical Applications.
- DOI:10.1002/adhm.201901396
- 发表时间:2020-01
- 期刊:
- 影响因子:10
- 作者:Fuchs S;Shariati K;Ma M
- 通讯作者:Ma M
Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells.
- DOI:10.1002/advs.202003708
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Wang X;Brown NK;Wang B;Shariati K;Wang K;Fuchs S;Melero-Martin JM;Ma M
- 通讯作者:Ma M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minglin Ma其他文献
Minglin Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Minglin Ma', 18)}}的其他基金
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
9910390 - 财政年份:2018
- 资助金额:
$ 38.91万 - 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
- 批准号:
10457445 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
- 批准号:
10297294 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
- 批准号:
10617773 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
Organogenesis in microcapsules: developing an efficient and scalable organoid culture platform
微胶囊中的器官发生:开发高效且可扩展的类器官培养平台
- 批准号:
8952452 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
相似国自然基金
用于肥厚型心肌病介入治疗的凝血酶-海藻酸盐复合微球消融剂制备机制及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
- 批准号:
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
- 批准号:51803101
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
- 批准号:21706045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
两性离子聚合物/海藻酸锆互穿网络多孔凝胶球的构建及其吸附水中磷酸盐机理研究
- 批准号:51608133
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Extracellular Matrix Impacts Angiogenesis and Growth Plate Repair
细胞外基质影响血管生成和生长板修复
- 批准号:
10668056 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10576353 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
Extensible Collagen Hydrogels for Cartilage Tissue Engineering
用于软骨组织工程的可延伸胶原水凝胶
- 批准号:
10553608 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10353393 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
Extensible Collagen Hydrogels for Cartilage Tissue Engineering
用于软骨组织工程的可延伸胶原水凝胶
- 批准号:
10669263 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别: