Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
基本信息
- 批准号:10402773
- 负责人:
- 金额:$ 38.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlginatesAreaBeta CellC57BL/6 MouseCanis familiarisCell SurvivalCell TransplantationCell physiologyCellsChemistryClinicalDevelopmentDevicesDiabetic mouseDiffusionDonor personEncapsulatedEngineeringEventFailureFamily suidaeFiberFibrosisForcepGlucoseGoalsHumanHydrogelsImmuneImmune systemImmunocompetentInfusion proceduresInjectionsInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of Langerhans TransplantationLaparoscopic Surgical ProceduresMechanicsMetabolicMicrocapsules drug delivery systemMusNanoporousNeonatalNutrientOutcomeOxygenPainPatientsPersonsPolymersProceduresPropertyRattusReportingReproducibilityResearchRetrievalRiskSCID Beige MouseSafetyScientistSourceStreptozocinStructureSupport SystemSurfaceSurgeonSurgical suturesSystemTestingTherapeutic EffectThinnessTimeTransplantationVertebral columnWorkbasebiomaterial compatibilitycanine modelcell replacement therapyclinical applicationclinically relevantclinically translatabledesigndiabeticexperienceexperimental studyhuman embryonic stem cellhuman stem cellsimplantationinnovationinterestisletislet stem cellsmedical complicationminimally invasivemouse modelnovelscale upstemstem cellstranslational potentialtransplant modelwasting
项目摘要
The objective of this project is to develop an advanced, clinically applicable islet/stem cell
encapsulation system for type 1 diabetes (T1D). Cell encapsulation and transplantation holds
enormous potential to treat T1D. Islets of allo or xeno origin or stem cell-derived beta cells are
encapsulated in a material or device that protects the cells from host immune rejection while
allowing facile mass transfer to maintain their survival and function. Numerous research groups
worldwide have made important progress, but clinical application of cell encapsulation has
remained elusive, due in a large part to the lack of a translatable encapsulation system that
meets the following basic but critical clinical needs: (1) It must be easy to handle, use and
transplant so that the encapsulation causes no harm to cells and the transplantation is minimally
invasive; (2) It must have sufficient biocompatibility (i.e. minimal or no formation of fibrosis),
robust mechanical stability and facile mass transfer (e.g. large surface area, short diffusion
distance and controllable permselectivity) so that the transplant can function for a long time, at
least several months; (3) It must be convenient to retrieve so that it can be removed or replaced
in the event of transplant failure or medical complications; (4) It must be scalable so that it can
deliver sufficient cell mass to produce a therapeutic effect. To meet these needs, we propose to
develop a novel, clinically translatable, TRAFFIC (Thread-Reinforced Alginate Fiber For Islet
enCapsulation) system from our newly developed, non-fibrotic zwitterionic-alginates for T1D
treatment. The critical innovations include both the structure design (i.e. incorporation a thin but
tough polymer thread into the center of a hydrogel fiber along its axis) and the hydrogel
chemistry (i.e. zwitterionically modified alginates). The inner polymer thread imparts mechanical
robustness and enables easy handling, implantation and retrieval, while the outer zwitterionic-
alginate hydrogel fiber provides necessary biocompatibility and facile mass transfer. We aim to
achieve long-term (>6 months) cures of diabetic mice using both rat islets and stem cell-derived
beta cells by optimizing the biocompatibility and mass transfer properties of the device. We will
also scale up the device and demonstrate its retrievability and functionality in dogs. The
anticipated outcome of this proposed research will be the development of a new cell
encapsulation system that is translatable for T1D patients.
该项目的目的是开发一个高级,临床上适用的胰岛/干细胞
1型糖尿病(T1D)的封装系统。细胞封装和移植
治疗T1D的巨大潜力。 Allo或Xeno起源或干细胞衍生的Beta细胞的胰岛是
封装在保护细胞免受宿主免疫排斥的材料或设备中,而
允许便捷的传质保持其生存和功能。许多研究小组
全球取得了重要的进步,但是细胞包封的临床应用已有
仍然难以捉摸,这在很大程度上是由于缺乏可翻译的封装系统
满足以下基本但关键的临床需求:(1)必须易于处理,使用和
移植以使得封装不会对细胞造成任何损害,并且移植最少
入侵(2)它必须具有足够的生物相容性(即最小或没有纤维化的形成),
强大的机械稳定性和易于质量传递(例如大的表面积,短扩散
距离和可控制的允许率),以便移植可以长时间起作用,在
至少几个月; (3)检索必须方便,以便可以将其删除或更换
如果发生移植失败或医疗并发症; (4)它必须是可扩展的,以便可以
提供足够的细胞肿块以产生治疗作用。为了满足这些需求,我们建议
开发一种新颖的,临床翻译的流量(胰岛的螺纹增强藻酸盐纤维
T1D的新开发的非纤维化zwitterion-Alginates的封装系统
治疗。关键创新既包括结构设计(即结合薄,但
沿其轴的水凝胶纤维中心的坚硬聚合物线和水凝胶
化学(即Z连锁修饰的藻酸盐)。内部聚合物线授予机械
稳健性并启用易于处理,植入和检索
藻酸盐水凝胶纤维提供了必要的生物相容性和易于质量的传质。我们的目标
使用大鼠胰岛和干细胞衍生的糖尿病小鼠长期治疗(> 6个月)
通过优化设备的生物相容性和传质特性来通过优化β细胞。我们将
还要扩展设备并证明其在狗中的可辨认性和功能。这
这项拟议的研究的预期结果将是新细胞的发展
可以翻译为T1D患者的封装系统。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression.
- DOI:10.1126/sciadv.abn0071
- 发表时间:2022-07-22
- 期刊:
- 影响因子:13.6
- 作者:
- 通讯作者:
A Safe, Fibrosis-Mitigating, and Scalable Encapsulation Device Supports Long-Term Function of Insulin-Producing Cells.
- DOI:10.1002/smll.202104899
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Liu W;Flanders JA;Wang LH;Liu Q;Bowers DT;Wang K;Chiu A;Wang X;Ernst AU;Shariati K;Caserto JS;Parker B;Gao D;Plesser MD;Grunnet LG;Rescan C;Pimentel Carletto R;Winkel L;Melero-Martin JM;Ma M
- 通讯作者:Ma M
Specialty Tough Hydrogels and Their Biomedical Applications.
- DOI:10.1002/adhm.201901396
- 发表时间:2020-01
- 期刊:
- 影响因子:10
- 作者:Fuchs S;Shariati K;Ma M
- 通讯作者:Ma M
A predictive computational platform for optimizing the design of bioartificial pancreas devices.
- DOI:10.1038/s41467-022-33760-5
- 发表时间:2022-10-13
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
An Adhesive Hydrogel with "Load-Sharing" Effect as Tissue Bandages for Drug and Cell Delivery.
- DOI:10.1002/adma.202001628
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Chen J;Wang D;Wang LH;Liu W;Chiu A;Shariati K;Liu Q;Wang X;Zhong Z;Webb J;Schwartz RE;Bouklas N;Ma M
- 通讯作者:Ma M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minglin Ma其他文献
Minglin Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Minglin Ma', 18)}}的其他基金
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
9910390 - 财政年份:2018
- 资助金额:
$ 38.91万 - 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
- 批准号:
10457445 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
- 批准号:
10297294 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
Vascular networks genetically engineered for protein drug delivery
用于蛋白质药物输送的基因工程血管网络
- 批准号:
10617773 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
Organogenesis in microcapsules: developing an efficient and scalable organoid culture platform
微胶囊中的器官发生:开发高效且可扩展的类器官培养平台
- 批准号:
8952452 - 财政年份:2015
- 资助金额:
$ 38.91万 - 项目类别:
相似国自然基金
磷酸盐耦合作用下亨氏马尾藻砷吸收、转运和形态分布的过程研究
- 批准号:42377231
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口悬浮颗粒中异养细菌同化硝酸盐的驱动机制与抑藻效应
- 批准号:32370113
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
硝化应激在微囊藻毒素联合亚硝酸盐暴露诱导血-卵泡屏障破坏致卵巢早衰中的作用及分子机制
- 批准号:82273594
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
剩余污泥胞外聚合物中类藻酸盐物质结构及阻燃特性分析研究
- 批准号:52200033
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硝化应激在微囊藻毒素联合亚硝酸盐暴露诱导血-卵泡屏障破坏致卵巢早衰中的作用及分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Extracellular Matrix Impacts Angiogenesis and Growth Plate Repair
细胞外基质影响血管生成和生长板修复
- 批准号:
10668056 - 财政年份:2023
- 资助金额:
$ 38.91万 - 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10576353 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
Extensible Collagen Hydrogels for Cartilage Tissue Engineering
用于软骨组织工程的可延伸胶原水凝胶
- 批准号:
10553608 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
Suturable bioprinted vascularized muscle constructs for treatment of skeletal muscle loss
用于治疗骨骼肌损失的可缝合生物打印血管化肌肉结构
- 批准号:
10353393 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别:
Extensible Collagen Hydrogels for Cartilage Tissue Engineering
用于软骨组织工程的可延伸胶原水凝胶
- 批准号:
10669263 - 财政年份:2021
- 资助金额:
$ 38.91万 - 项目类别: