The impact of the physical microenvironment on trophoblast function
物理微环境对滋养层功能的影响
基本信息
- 批准号:10398826
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAngiogenic FactorBiological AssayBloodBlood CirculationBlood flowCell CommunicationCell Culture TechniquesCell modelCellsClinicalCollagenCuesDevicesDiseaseE-CadherinEndocrineEndocrine GlandsEndocrine disruptionEndothelial CellsEnsureEnvironmentEthicsExtracellular MatrixFetal DevelopmentFetusFibroblastsFibronectinsFibrosisFunctional disorderGatekeepingGelGlucose TransporterGrowth FactorHealthHeparinHomeostasisHormone secretionHormonesHumanHuman Chorionic GonadotropinHydrogelsHypoxiaIn VitroKnowledgeMaternal-fetal medicineMediatingMediator of activation proteinMembraneMicrofluidic MicrochipsMicrofluidicsModelingMolecularMonitorMorphologyMothersNutrientOrganOxygenPGF genePathogenicityPhenotypePhysiologicalPhysiologyPlacentaPlacentationPlayPre-EclampsiaPregnancyPregnancy ComplicationsProcessProductionPropertyProteinsRoleSLC2A1 geneSomatotropinSpiral Artery of the EndometriumStainsStimulusStreamSystemTechnical ExpertiseTestingTherapeuticTissuesUpdateUterusbasecell typedesignfetalhealthy pregnancyin vitro Modelmaternal conditionnovelresponseshear stresstranscription factortrophoblastwasting
项目摘要
The placenta is a critical organ that develops during pregnancy to allow the fetus to obtain nutrients and remove waste. The placenta acts as both a gatekeeper and an endocrine organ; two functions which are vital for a healthy pregnancy. However, how the placenta acts after perturbations of the system is not well known due to ethical concerns regarding obtaining tissue throughout all stages of pregnancy and poor in vitro or ex vivo systems that lack the level of control and physiological relevance needed. In preliminary studies, we have successfully made an in vitro microfluidic placenta model that allows for culture of three different cell types (trophoblast, fibroblasts, and endothelial cells) within natural protein gels. Microfluidic channels incorporate shear stress into the model and the tri-cell culture allows for cell-cell communication which have both been shown to be vital for physiologically relevant trophoblast phenotype. Cells can be cultured on natural substrates derived from human placenta with (1) ease, (2) in parallel, (3) with tight control, and (4) without the need for technical expertise in microfluidics. The model can easily be updated to study many mechanistic and fundamental properties of the healthy or dysregulated placenta. One disease that can cause complications during pregnancy, preeclampsia (PE), is associated with disrupted placentation from limited remodeling of the uterine wall; a process vital to ensure healthy placental tissue, proper oxygen concentration, and appropriate amount of shear stress within the placenta. Due to the lack of uterine remodeling, placental extracellular matrix (ECM) is stiffened via fibrosis, oxygen tension is lowered, and shear stress is increased. We hypothesize that these physical microenvironmental cues within the placenta cause disrupted trophoblast function that can be mechanistically examined in our novel microfluidic placenta model. In Aim 1 we will alter our microfluidic device in order to test how ECM dysregulation alters trophoblast function. We will make stromal layers of healthy or pathogenic stiffnesses from both collagen-I and human placenta derived ECM. Placental derived ECM will enable us to test how the full milieu of the placenta ECM impacts trophoblast function, while the collagen-I ECM will allow for tighter control of the environment. In Aim 2 we will test the closely tied relationship between oxygen tension and shear stress on trophoblast function. Devices will be cultured at healthy or pathogenic oxygen tension and shear stress to elucidate if their stimuli are synergistic. These studies will demonstrate the ease of our system in being able to control the microphysical properties of the system for elucidation of mechanistic properties of multi-cell models of the placenta.
胎盘是怀孕期间发育的重要器官,可以让胎儿获取营养并清除废物。胎盘既是看门人,又是内分泌器官。这两项功能对于健康怀孕至关重要。然而,由于在怀孕各个阶段获取组织的伦理问题以及缺乏所需控制水平和生理相关性的不良体外或离体系统,胎盘在系统扰动后如何发挥作用尚不清楚。在初步研究中,我们成功制作了体外微流体胎盘模型,允许在天然蛋白质凝胶内培养三种不同的细胞类型(滋养层细胞、成纤维细胞和内皮细胞)。微流体通道将剪切应力纳入模型中,三细胞培养允许细胞间通讯,这两者都已被证明对于生理相关的滋养层表型至关重要。细胞可以在源自人胎盘的天然基质上培养,并且(1)轻松,(2)平行,(3)严格控制,(4)无需微流体技术专业知识。该模型可以轻松更新,以研究健康或失调胎盘的许多机械和基本特性。先兆子痫 (PE) 是一种可在妊娠期间引起并发症的疾病,它与子宫壁重塑有限导致的胎盘破坏有关。这一过程对于确保健康的胎盘组织、适当的氧气浓度以及胎盘内适当的剪切应力至关重要。由于缺乏子宫重塑,胎盘细胞外基质(ECM)通过纤维化而变硬,氧张力降低,剪切应力增加。我们假设胎盘内的这些物理微环境线索会导致滋养层功能破坏,这可以在我们的新型微流体胎盘模型中进行机械检查。在目标 1 中,我们将改变我们的微流体装置,以测试 ECM 失调如何改变滋养层功能。我们将从 I 型胶原蛋白和人胎盘衍生的 ECM 中制备健康或致病性硬度的基质层。胎盘来源的 ECM 将使我们能够测试胎盘 ECM 的完整环境如何影响滋养层功能,而胶原蛋白 I ECM 将允许更严格地控制环境。在目标 2 中,我们将测试氧张力和剪切应力对滋养层功能之间的密切关系。设备将在健康或致病的氧张力和剪切应力下进行培养,以阐明它们的刺激是否具有协同作用。这些研究将证明我们的系统能够轻松控制系统的微物理特性,以阐明胎盘多细胞模型的机械特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Nelson其他文献
Katherine Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Nelson', 18)}}的其他基金
The impact of the physical microenvironment on trophoblast function
物理微环境对滋养层功能的影响
- 批准号:
10611430 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
负载类血管生成因子3的可注射水凝胶局部控释体系构建及其对糖尿病下肢缺血病变的治疗作用
- 批准号:51973125
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
AGGF1-SIRT2轴通过调控自噬抑制肾癌发生的分子机制研究
- 批准号:81902860
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
LncRNA-NEAT1通过ceRNA作用促进卵巢癌血管新生的机制研究
- 批准号:81860515
- 批准年份:2018
- 资助金额:34.8 万元
- 项目类别:地区科学基金项目
血管生成因子AGGF1在机体抗DNA病毒天然免疫中的作用及调控机制
- 批准号:81801556
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
IL-21致KC分泌促血管生成因子调控银屑病微血管异常增生的机制研究
- 批准号:81703130
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioengineered Composite for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物工程复合材料
- 批准号:
10639077 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Validation of Neuropilin-1 receptor signaling in nociceptive processing
伤害感受处理中 Neuropilin-1 受体信号传导的验证
- 批准号:
10774563 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Astrocyte-specific molecular cues guiding retinal angiogenesis
星形胶质细胞特异性分子线索指导视网膜血管生成
- 批准号:
10676468 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Biomarkers to Track Effective Interventions that Delay Dementia Onset in Participants of the "Risk Reduction for Alzheimer's Disease (rrAD)" Trial
用于追踪“阿尔茨海默病 (rrAD) 风险降低”试验参与者延迟痴呆发作的有效干预措施的生物标志物
- 批准号:
10746197 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Defining pro-metastatic and endothelial-regulatory roles for LIN28B in hepatocellular carcinoma
定义 LIN28B 在肝细胞癌中的促转移和内皮调节作用
- 批准号:
10865508 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: