Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
基本信息
- 批准号:10221062
- 负责人:
- 金额:$ 23.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AnimalsArteriesBiological ProcessBlood VesselsBrainBrain HypoxiaCandidate Disease GeneCell CommunicationCell LineageCell NucleusCellsCerebral PalsyCerebrovascular systemChronicDataDevelopmentEmbryoEndotheliumFunctional disorderGene ExpressionGene Expression ProfileGenesHumanHypoxiaIn SituInfantInjuryIntellectual functioning disabilityInterneuronsLigandsLightMapsMediatingMolecularMorphologyMotor NeuronsMusNatureNeonatalNervous System TraumaNeuronsOligodendrogliaPathway interactionsPositioning AttributePremature BirthProcessRegulationReportingRodentRoleScienceSpecific qualifier valueSpinalTelencephalonTestingTherapeutic InterventionTimeUp-RegulationVascular Endothelial Growth FactorsVascularizationangiogenesisarteriolecell fate specificationcell growth regulationcell typehypoxia neonatoruminsightmigrationmyelinationneonatal brainneonatal humanneonatal hypoxic-ischemic brain injuryneonatal injuryneonateneural circuitneurogeneticsnovelnovel markeroligodendrocyte lineageoligodendrocyte precursorprogramsresiliencescaffoldtherapeutic developmenttranscriptome sequencingtranscriptomicswhite matter
项目摘要
Project 2 Abstract
Circuit formation in developing human brain involves sequential steps of: (i) cell fate specification, (ii) proliferation
and regulation of precursor pool size, and (iii) migration of neural cells to their appropriate position to integrate
into local circuits. Young interneurons (IN) and oligodendrocyte precursors (OPCs) persist as immature yet
committed lineage cells for a protracted period of time during development, undergoing extensive migration and
late differentiation before integration into/and myelination of neural circuits in human developing brain. This
relatively long developmental time course means that they may be more vulnerable to neonatal injury. Our
findings in the prior cycle of this program highlighted novel stromal interactions of OPCs and IN with blood
vessels during development. We identified that OPCs use vasculature as a physical scaffold for migration in the
developing CNS (Tsai Science 2016 PMC5472053), that OPCs drive white matter angiogenesis in mouse brain
(Yuen Cell 2014 PMC4149873), and that migrating clusters of interneurons associate with the vasculature in the
human brain (Paredes Science 2016 PMC5436574). However, very little is understood about the cellular and
molecular mechanisms that underlie human OPC induced angiogenesis and IN perivascular migration, a
phenomenon unique to human brain development. What are the cellular mechanisms that underlie angiogenesis
directed by OL lineage in human brain? And how does the establishment of a vascular scaffold subsequently
mediate and regulate IN sub-type migration? This project seeks to understand mechanisms underlying these
processes in human neonatal brain. We will 1) evaluate factors involved in OPC interaction with endothelial tip
cells as well as the morphological interaction, identify candidate angiogenic pathways and novel tip cell markers
in human brain, and investigate dysfunction of OPC-tip cell interactions in human neonatal hypoxic injury. We
will 2) determine a functional role for OPC-encoded Wnt and VEGF ligands in orchestrating endothelial tip cell
angiogenesis and in resilience to hypoxic injury, and we will 3) identify the transcriptomic signature of vessel-
associated migrating IN in human neonatal brain, and determine whether diversity of vessel associated versus
non-vessel associated IN migration is a reflection on their developmental origin. Understanding the cellular
mechanisms mediating OPC-mediated angiogenesis and IN vessel-associated migration in human brain will not
only elucidate fundamental biological processes, but will provide insight into how dysregulation could occur in
preterm birth and term hypoxia and provide perspective for the planning for therapeutic interventions.
项目2摘要
人类大脑发育中的回路形成涉及以下连续步骤:(i) 细胞命运规范,(ii) 增殖
和前体库大小的调节,以及(iii)神经细胞迁移到适当的位置进行整合
进入本地电路。年轻的中间神经元 (IN) 和少突胶质细胞前体 (OPC) 仍然不成熟
定型谱系细胞在发育过程中持续很长一段时间,经历广泛的迁移和
人类发育大脑中神经回路整合/和髓鞘化之前的晚期分化。这
相对较长的发育时间意味着他们可能更容易受到新生儿伤害。我们的
该计划前一个周期的研究结果强调了 OPC 和 IN 与血液的新型基质相互作用
开发期间的船只。我们发现 OPC 使用脉管系统作为迁移的物理支架。
发育中枢神经系统(Tsai Science 2016 PMC5472053),OPCs 驱动小鼠大脑白质血管生成
(Yuen Cell 2014 PMC4149873),迁移的中间神经元簇与血管系统相关
人脑(Paredes Science 2016 PMC5436574)。然而,人们对细胞和
人类 OPC 诱导血管生成和 IN 血管周围迁移的分子机制
人类大脑发育所特有的现象。血管生成的细胞机制是什么
由人脑中的OL谱系指导?随后血管支架的建立又是如何进行的呢?
介导和调节IN亚型迁移?该项目旨在了解这些背后的机制
人类新生儿大脑中的过程。我们将 1) 评估 OPC 与内皮尖端相互作用所涉及的因素
细胞以及形态学相互作用,识别候选血管生成途径和新的尖端细胞标记
人脑中,并研究人类新生儿缺氧损伤中 OPC-tip 细胞相互作用的功能障碍。我们
2) 确定 OPC 编码的 Wnt 和 VEGF 配体在协调内皮尖端细胞中的功能作用
血管生成和对缺氧损伤的恢复能力,我们将3)鉴定血管的转录组学特征-
人类新生儿大脑中相关的迁移性IN,并确定血管多样性是否与相关
非血管相关的 IN 迁移反映了它们的发育起源。了解细胞
人脑中介导 OPC 介导的血管生成和 IN 血管相关迁移的机制不会
仅阐明基本的生物过程,但将提供有关失调如何发生的见解
早产和足月缺氧,并为治疗干预的规划提供视角。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Philip James Fancy其他文献
Stephen Philip James Fancy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Philip James Fancy', 18)}}的其他基金
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Mechanisms of oligodendroglial ciliary function in white matter injury repair
少突胶质细胞纤毛功能在白质损伤修复中的机制
- 批准号:
10659990 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Oligodendroglial Intrinsic Ring Finger Protein family members are injury specific, but not developmental, regulators of oligodendrocyte maturation
少突胶质细胞固有环指蛋白家族成员是损伤特异性的,但不是发育性的少突胶质细胞成熟的调节因子
- 批准号:
10239257 - 财政年份:2020
- 资助金额:
$ 23.32万 - 项目类别:
Vasculature provides the substrate for oligodendrocyte progenitor migration in development and disease
脉管系统为少突胶质细胞祖细胞在发育和疾病中迁移提供基质
- 批准号:
9309564 - 财政年份:2017
- 资助金额:
$ 23.32万 - 项目类别:
Vasculature provides the substrate for oligodendrocyte progenitor migration in development and disease
脉管系统为少突胶质细胞祖细胞在发育和疾病中迁移提供基质
- 批准号:
10115137 - 财政年份:2017
- 资助金额:
$ 23.32万 - 项目类别:
Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
- 批准号:
10627968 - 财政年份:2014
- 资助金额:
$ 23.32万 - 项目类别:
Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
- 批准号:
10408734 - 财政年份:2014
- 资助金额:
$ 23.32万 - 项目类别:
Project 2: Mechanisms underlying oligodendrocyte precursor-mediated angiogenesis and interneuron vessel-associated migration in human neonatal brain
项目2:人类新生儿脑中少突胶质细胞前体介导的血管生成和中间神经元血管相关迁移的机制
- 批准号:
10023629 - 财政年份:
- 资助金额:
$ 23.32万 - 项目类别:
相似国自然基金
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
白血病抑制因子在诱导性多能干细胞分化的血管内皮前体细胞抑制动脉内膜增生中的作用
- 批准号:82370415
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
缝隙连接Cx43磷酸化修饰介导钙信号传递异常参与尼古丁致肺动脉重构的分子机制
- 批准号:82373622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HMGCS2调控巨噬细胞训练免疫对动脉粥样硬化斑块“维稳”的机制研究
- 批准号:82373884
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于NLRP3炎性小体驱动的巨噬细胞焦亡研究穗花杉双黄酮抗动脉粥样硬化作用
- 批准号:82360786
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Uteroplacental Vasculature and Fetal Growth after Plastic Particle Exposure
塑料颗粒暴露后的子宫胎盘脉管系统和胎儿生长
- 批准号:
10677264 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Biogenesis and Catabolism of Atherogenic Lipoproteins
致动脉粥样硬化脂蛋白的生物发生和分解代谢
- 批准号:
10628985 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
The role of Alpha1-Adrenergic Receptors Promoter Methylation in Cerebral Autoregulation in Fetus
α1-肾上腺素能受体启动子甲基化在胎儿大脑自动调节中的作用
- 批准号:
10657080 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别:
Non-invasive imaging of reactive oxygen species in reperfusion injury myocardial infarction
再灌注损伤心肌梗死中活性氧的无创成像
- 批准号:
10716836 - 财政年份:2023
- 资助金额:
$ 23.32万 - 项目类别: