Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
基本信息
- 批准号:10220892
- 负责人:
- 金额:$ 55.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesAffinityAmino AcidsAntibodiesBRAF geneBindingBinding ProteinsBiochemicalBiochemistryBiologicalBiologyBiophysicsCause of DeathCellsChargeChimera organismClinicalCommunitiesCoupledDevelopmentDimerizationEnvironmentEventExtracellular DomainFDA approvedFamilyGTP BindingGenetically Engineered MouseGoalsGrantGrowthGrowth FactorGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHumanIn VitroIndividualInternationalKRAS2 geneLaboratoriesMalignant NeoplasmsMalignant neoplasm of pancreasMediatingMissionModalityModelingMolecularMutateMutationNRAS geneNational Cancer InstituteOncogenesOncogenicOncoproteinsOxidation-ReductionPathway interactionsPatientsPharmaceutical PreparationsPhosphotransferasesPlayPrevalenceProcessProtein EngineeringProtein IsoformsProteinsPublic HealthRAS genesRAS inhibitionRas InhibitorReagentResearchRiskRoleSeriesSignal TransductionSiteSpecificityStructureSurfaceSystemTalentsTechnologyTertiary Protein StructureTestingTherapeuticUnited StatesWorkanticancer researchbasecancer therapycell growthchemical geneticsempoweredexperimental studygenetic approachin vivoinhibitor/antagonistinnovationinsightmutantnovelnovel strategiespre-clinicalpreventprotein functionraf Kinasesras Proteinsreceptorrecruitsteroid hormone receptorsuccesstargeted treatmenttherapeutically effectivetooltumortumorigenesistumorigenic
项目摘要
Project Summary:
Cancer is a leading cause of death in the United States and worldwide. As such the President of the United
States has recently established the White House Cancer Moonshot Task Force, the mission of which is to
eliminate cancer as we know it. Part of this mission is to encourage development of novel cancer treatments.
This innovative multi-PI proposal represents a novel approach to this challenge. Oncogenic activation of the
RAS family of GTPases occurs in ~30% of cancers making it the most frequently mutated oncogene in human
cancers. Despite a great deal of progress in our understanding of the biochemistry of RAS and it's role in
tumorigenesis, development of effective therapeutic inhibitors of RAS to date has been disappointing. Thus,
there remains a critical need to develop targeted inhibitors of this oncoprotein for treatment of patients with
Ras-positive tumors. Using an unbiased, protein engineering approach, we have developed a highly specific
and potent inhibitor of H-RAS and K-RAS based on the monobody platform. Monobodies are single-domain
proteins of ~95 amino acids that achieve levels of affinity and selectivity similar to antibodies yet are insensitive
to the redox potential of their environment. High affinity monobodies have been isolated to a diverse array of
targets including the extracellular domain of receptors, kinases, steroid hormone receptors, and modular
protein domains. Using this protein-based monobody inhibitor as a powerful experimental tool, we will probe
the function of RAS in the tumorigenic process in ways that have not previously been possible. We propose
three major aims to accomplish our goal of interrogating RAS function in oncogenesis. In Aim 1, we will use
genetically encoded versions of our monobody inhibitor, termed NS1, to address unanswered questions
regarding RAS function. In particular, NS1 blocks RAS through binding an allosteric interface important for
dimerization of RAS and stimulation of signaling and transformation. Using NS1, we will address the
importance of RAS dimerization in activation of multiple RAS effector pathways as well as probe the isoform
specific difference in effector engagement. Aim 2 will employ a unique chemical-genetic approach to regulate
NS1 expression in vivo to address whether targeting this novel allosteric interface interferes with RAS-
dependent tumorigenesis. Building on our recent success with NS1, Aim 3 will develop isoform specific
inhibitory monobodies to each RAS isoform and determine their mechanism of action. These studies represent
a unique and powerful approach toward studying RAS and defining potential novel approaches to blocking
RAS action. Thus, our work has the potential to make a major impact on cancer therapy. In addition, this
project is highly relevant to the mission of National Cancer Institute's RAS Initiative at the Frederick National
Laboratory for Cancer Research which is charged with targeting RAS-dependent cancers as well as President
Obama's Cancer Moonshot initiative. We anticipate that our studies will answer important questions regarding
RAS function in cancer while also providing powerful new experimental tools for the wider scientific community
to utilize in interrogating RAS function.
项目摘要:
癌症是美国和全球的主要死亡原因。因此,联合总统
各州最近建立了白宫癌月份特遣队,其任务是
消除我们所知道的癌症。该任务的一部分是鼓励发展新型癌症治疗。
这项创新的多PI提案代表了解决这一挑战的一种新方法。致癌激活
RAS家族GTPases发生在约30%的癌症中,使其成为人类最常见的癌基因
癌症。尽管在我们对RA的生物化学的理解中取得了很大进步,并且它在
肿瘤发生,迄今为止RAS有效的治疗抑制剂的发展令人失望。因此,
仍需要开发这种癌蛋白的靶向抑制剂来治疗患者
RAS阳性肿瘤。使用公正的蛋白质工程方法,我们开发了一种高度特异性的
以及基于单体平台的H-RAS和K-RAS的有效抑制剂。单子是单域
〜95个氨基酸的蛋白质达到了类似于抗体的亲和力和选择性水平但不敏感的蛋白质
具有其环境的氧化还原潜力。高亲和力单体化已被隔离到各种各样的阵列
包括受体外细胞域,激酶,类固醇激素受体和模块化的靶标
蛋白质结构域。将此基于蛋白质的单体抑制剂作为强大的实验工具,我们将探测
RA在肿瘤过程中的功能以前是不可能的。我们建议
三个主要目的是实现我们在肿瘤发生中询问RAS功能的目标。在AIM 1中,我们将使用
我们的单体抑制剂的遗传编码版本称为NS1,以解决未解决的问题
关于RAS功能。特别是,NS1通过结合变构界面来阻止RAS
RAS的二聚化以及信号传导和转化的刺激。使用NS1,我们将解决
RAS二聚化在多个RAS效应途径的激活中的重要性以及探测同工型
效应子参与方面的特定差异。 AIM 2将采用独特的化学遗传学方法来调节
NS1在体内表达以解决针对这种新型变构界面是否会干扰Ras-
依赖性肿瘤发生。在我们最近在NS1成功的基础上,AIM 3将开发同工型
对每个RAS同工型的抑制性单体化并确定其作用机理。这些研究代表
一种独特而有力的方法,用于研究RAS并定义潜在的新方法来阻止
RAS动作。因此,我们的工作有可能对癌症治疗产生重大影响。此外,这
项目与弗雷德里克国家(Frederick National)国家癌症研究所的RAS计划的任务高度相关
负责针对RAS依赖性癌症的癌症研究实验室以及总统
奥巴马的癌症月亮倡议。我们预计我们的研究将回答有关的重要问题
RAS在癌症中的功能,同时还为更广泛的科学界提供强大的新实验工具
利用询问RAS功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHOHEI KOIDE其他文献
SHOHEI KOIDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHOHEI KOIDE', 18)}}的其他基金
Novel biologics platform for targeting tumors driven by intracellular oncoproteins
用于靶向细胞内癌蛋白驱动的肿瘤的新型生物制剂平台
- 批准号:
10356663 - 财政年份:2021
- 资助金额:
$ 55.1万 - 项目类别:
Transport Mechanisms and Inhibition of Efflux Pumps in Pathogenic Organisms
病原生物外排泵的转运机制和抑制
- 批准号:
10344321 - 财政年份:2021
- 资助金额:
$ 55.1万 - 项目类别:
Novel biologics platform for targeting tumors driven by intracellular oncoproteins
用于靶向细胞内癌蛋白驱动的肿瘤的新型生物制剂平台
- 批准号:
10533364 - 财政年份:2021
- 资助金额:
$ 55.1万 - 项目类别:
Transport Mechanisms and Inhibition of Efflux Pumps in Pathogenic Organisms
病原生物外排泵的转运机制和抑制
- 批准号:
10531273 - 财政年份:2021
- 资助金额:
$ 55.1万 - 项目类别:
Accurate prediction of neutralization capacity from deep mining of SARS-CoV-2 serology
深度挖掘SARS-CoV-2血清学,准确预测中和能力
- 批准号:
10195613 - 财政年份:2020
- 资助金额:
$ 55.1万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9977135 - 财政年份:2018
- 资助金额:
$ 55.1万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9751810 - 财政年份:2018
- 资助金额:
$ 55.1万 - 项目类别:
Probing RAS-mediated signaling mechanisms with monobody inhibitors
使用单体抑制剂探索 RAS 介导的信号传导机制
- 批准号:
9384266 - 财政年份:2017
- 资助金额:
$ 55.1万 - 项目类别:
Probing RAS-mediated Signaling with Monobody Inhibitors
使用单体抑制剂探测 RAS 介导的信号转导
- 批准号:
10530818 - 财政年份:2017
- 资助金额:
$ 55.1万 - 项目类别:
Probing RAS-mediated Signaling with Monobody Inhibitors
使用单体抑制剂探测 RAS 介导的信号转导
- 批准号:
10666670 - 财政年份:2017
- 资助金额:
$ 55.1万 - 项目类别:
相似海外基金
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:
10785755 - 财政年份:2023
- 资助金额:
$ 55.1万 - 项目类别:
University of Wisconsin-Madison Postbaccalaureate Research Education Program (PREP) for increasing diversity in STEM
威斯康星大学麦迪逊分校学士后研究教育计划 (PREP),旨在增加 STEM 的多样性
- 批准号:
10706455 - 财政年份:2022
- 资助金额:
$ 55.1万 - 项目类别:
Exploring the mechanisms of action of anti-ADAMTS 13 antibodies in immune thrombotic thrombocytopenic purpura
探讨抗 ADAMTS 13 抗体在免疫性血栓性血小板减少性紫癜中的作用机制
- 批准号:
10429277 - 财政年份:2022
- 资助金额:
$ 55.1万 - 项目类别:
Mechanistic insights into factor VIII inhibitor formation and eradication
对因子 VIII 抑制剂形成和根除的机制见解
- 批准号:
10641791 - 财政年份:2021
- 资助金额:
$ 55.1万 - 项目类别: