An Integrative Computational Framework for DNA Hydroxymethylation Data Mining and Interpretation
DNA 羟甲基化数据挖掘和解释的综合计算框架
基本信息
- 批准号:10210409
- 负责人:
- 金额:$ 47.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsB cell differentiationBehaviorCell Differentiation processCellsChromatinDNADNA MethylationDNA Modification ProcessDNA SequenceDataData AnalysesData SetDiseaseDissectionEnhancersEpigenetic ProcessEventFoundationsGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomeGenomic SegmentGoalsHeterogeneityKnowledge DiscoveryLaboratoriesLeadLinkMachine LearningMalignant NeoplasmsMethodsMiningModificationMolecularNuclearPathologicPatternPropertyPublic HealthResearchResearch PersonnelRoleTranscriptional ActivationTranscriptional RegulationWorkbasecancer cellcell behaviorcell typecomputer frameworkcomputerized toolsdata integrationdata miningdesignembryonic stem cellepigenomefitnessgenomic datahistone modificationimprovedinnovationlearning networknext generation sequencingpreventprogramsstem cell differentiationtherapeutic targettooltranscription factortranscriptomeuser-friendly
项目摘要
PROJECT SUMMARY/ABSTRACT
Recent advances in next generation–sequencing (NGS)-based molecular methods have illuminated the
hierarchical organization of the genome and have shown that changes in the epigenome can promote or prevent
the access of transcription factors (TFs) to specific DNA sequences, move genes between nuclear
compartments, and build or remove the insulation between neighboring genomic regions. As changes in the
epigenome and chromatin organization can derail precise transcriptional regulatory programs to change cell
differentiation status or induce a pathological state, research in Dr. Li’s laboratory seeks to improve our ability to
define and understand the impact of such changes across multiple layers of transcriptional regulation in the cell.
The laboratory has effectively addressed the regulatory roles of DNA methylation in its previous and ongoing
work and now extends its focus to hydroxymethylation. 5-hydroxymethylcytosine (5hmC), is a key epigenetic
modification linked to transcriptional activation; however, 5hmC data and its genome properties have thus far
been evaluated with limited integration of different genomic data types. Moreover, there is no integrative
computational framework designed to interpret the functional role of 5hmC in the context of 5-methycytosine
(5mC), enhancer activities, chromatin interactions, gene expression data, and DNA sequence information. This
proposal will fill the growing need for user-friendly, interpretable, and extendable tools for mining 5hmC data
toward laying a foundation for basic mechanistic studies of the epigenome and facilitate discovery of potential
therapeutic targets in disease. Building on the investigator’s progress in revealing the dynamics of 5hmC and its
impact on gene regulation, the proposal will now develop innovative computational tools for 5hmC data mining
and data integration with other NGS datasets, with a focus on applying these tools to B cell differentiation, cancer,
and embryonic stem cell (ESC) differentiation. Key goals over the next five years include developing a
computational framework to mine short- and long-read sequencing data to answer the following questions: (1)
How does 5hmC contribute to epigenetic heterogeneity? (2) How does 5hmC epigenetic heterogeneity contribute
to transcriptome heterogeneity? (3) How do 5hmC levels and epigenetic heterogeneity communicate with histone
modifications, enhancer activities, chromatin interactions, and chromatin organization? We will combine machine
learning and network mining algorithms to enable knowledge discovery and data integration from diverse
genomic data types. We will then harness the 5hmC data-mining framework to identify 5hmC patterns that
correlate with ESC differentiation, B cell differentiation, and that contribute to the fitness advantage of cancer
cells. This work is significant because it will be the first dissection of 5hmC’s contribution to local and long-range
epigenetic heterogeneity and the first computational framework to uncover the cross-talk between DNA
modifications and other transcriptional regulators via chromatin interaction data. Collectively, this work will yield
a fuller picture of the molecular events that underlie fundamental changes in cell state and behavior.
项目摘要/摘要
下一代 - 基于(NGS)的分子方法的最新进展已经阐明了
基因组的等级组织,并表明表观基因组的变化可以促进或预防
转录因子(TFS)访问特定DNA序列,在核之间移动基因
隔室,并在相邻基因组区域之间建立或去除绝缘层。随着变化
表观基因组和染色质组织可能会使精确的转录调节程序更改细胞
分化状况或诱导病理状态,Li博士实验室的研究旨在提高我们的能力
定义并了解细胞中多个转录调控层的这种变化的影响。
该实验室有效地解决了DNA甲基化在其以前和正在进行的持续的调节作用
工作,现在将其重点扩展到羟甲基。 5-羟基甲基胞嘧啶(5HMC)是关键的表观遗传学
与转录激活相关的修改;但是,到目前为止,5HMC数据及其基因组特性已经
对不同基因组数据类型的集成有限进行评估。而且,没有集成
计算框架旨在解释5HMC在5-甲基环肽中的功能作用
(5MC),增强剂活性,染色质相互作用,基因表达数据和DNA序列信息。这
提案将满足对挖掘5HMC数据的用户友好,可解释和可扩展工具的日益增长的需求
为表观基因组的基本机械研究奠定基础,并促进潜力
疾病的治疗靶标。基于调查员在揭示5HMC及其动力学方面的进步基础
对基因调节的影响,该提案现在将开发用于5HMC数据挖掘的创新计算工具
以及与其他NGS数据集集成的数据集成,重点是将这些工具应用于B细胞分化,癌症,
和胚胎干细胞(ESC)分化。接下来五年的关键目标包括开发
计算框架以挖掘简短和长阅读测序数据以回答以下问题:(1)
5HMC如何促进表观遗传异质性? (2)5HMC表观遗传异质性如何贡献
转录组异质性? (3)5HMC水平和表观遗传异质性如何与组蛋白通信
修改,增强剂活动,染色质相互作用和染色质组织?我们将组合机器
学习和网络挖掘算法以实现潜水员的知识发现和数据集成
基因组数据类型。然后,我们将利用5HMC数据挖掘框架来识别5HMC模式
与ESC分化,B细胞分化相关,这有助于癌症的适应性优势
细胞。这项工作很重要,因为它将是5HMC对本地和远程的贡献的第一次解剖
表观遗传异质性和第一个揭示DNA之间串扰的计算框架
通过染色质相互作用数据进行修改和其他转录调节器。总的来说,这项工作将产生
构成细胞状态和行为基本变化的分子事件的更全面图景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Li其他文献
Sheng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Li', 18)}}的其他基金
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 47.25万 - 项目类别:
3D Genome Reorganization and Epigenome Dynamics of Clonal Hematopoiesis
克隆造血的 3D 基因组重组和表观基因组动力学
- 批准号:
10674252 - 财政年份:2022
- 资助金额:
$ 47.25万 - 项目类别:
The Jackson Laboratory Senescence Tissue Mapping Center (JAX-Sen TMC) - Data Analysis Core
杰克逊实验室衰老组织绘图中心 (JAX-Sen TMC) - 数据分析核心
- 批准号:
10552968 - 财政年份:2022
- 资助金额:
$ 47.25万 - 项目类别:
The Jackson Laboratory Senescence Tissue Mapping Center (JAX-Sen TMC) - Data Analysis Core
杰克逊实验室衰老组织绘图中心 (JAX-Sen TMC) - 数据分析核心
- 批准号:
10683393 - 财政年份:2022
- 资助金额:
$ 47.25万 - 项目类别:
An Integrative Computational Framework for DNA Hydroxymethylation Data Mining and Interpretation
DNA 羟甲基化数据挖掘和解释的综合计算框架
- 批准号:
10707018 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
An Integrative Computational Framework for DNA Hydroxymethylation Data Mining and Interpretation
DNA 羟甲基化数据挖掘和解释的综合计算框架
- 批准号:
10455506 - 财政年份:2019
- 资助金额:
$ 47.25万 - 项目类别:
Imaging of 3D Innervation Zone Distribution in Spastic Muscles from High-Density Surface EMG Recordings
根据高密度表面 EMG 记录对痉挛肌肉的 3D 神经支配区分布进行成像
- 批准号:
9318021 - 财政年份:2017
- 资助金额:
$ 47.25万 - 项目类别:
Breathing-controlled Electrical Stimulation for Phantom Pain Management
用于幻痛管理的呼吸控制电刺激
- 批准号:
9249072 - 财政年份:2016
- 资助金额:
$ 47.25万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal Therapy for Pediatric T-cell Acute Lymphoblastic Leukemia
小儿 T 细胞急性淋巴细胞白血病的克隆疗法
- 批准号:
10304780 - 财政年份:2021
- 资助金额:
$ 47.25万 - 项目类别:
The cellular mechanisms of immunological memory development in COVID-19 patients
COVID-19患者免疫记忆发展的细胞机制
- 批准号:
10465343 - 财政年份:2021
- 资助金额:
$ 47.25万 - 项目类别:
Gene expression, Epigenetics and Bioinformatics Core
基因表达、表观遗传学和生物信息学核心
- 批准号:
10024586 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别:
Gene expression, Epigenetics and Bioinformatics Core
基因表达、表观遗传学和生物信息学核心
- 批准号:
10488585 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别:
Gene expression, Epigenetics and Bioinformatics Core
基因表达、表观遗传学和生物信息学核心
- 批准号:
10683264 - 财政年份:2020
- 资助金额:
$ 47.25万 - 项目类别: