Role and regulation of inflammasome in the intraocular pressure-induced injury of retinal ganglion cells
炎症小体在眼压所致视网膜神经节细胞损伤中的作用及调控
基本信息
- 批准号:10389549
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-10 至 2025-01-09
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAffectAngle-Closure GlaucomaAntigen-Antibody ComplexApoptosisAxonBlindnessBlood PressureCASP1 geneCaffeineCalciumCalcium ChannelCell DeathCell DensityCell SeparationCell SurvivalCell physiologyCell surfaceCessation of lifeChronicClinicalClinical TreatmentComplexDataDiseaseElectrophysiology (science)ElectroretinographyEnvironmental WindEventExerciseExposure toEyeFunctional disorderGenesGeneticGlaucomaHeadHumanInflammasomeInflammatoryInjuryIntakeInterleukin-1InterventionKnockout MiceKnowledgeLife StyleLinkMechanical StressMechanoreceptorsMetabolic stressModalityModelingMolecularMusNeuronal DysfunctionNeuronal InjuryNeuronsOcular HypertensionOperative Surgical ProceduresOxidative StressPathologyPathway interactionsPatternPersonsPharmaceutical PreparationsPharmacologyPhysiologic Intraocular PressurePlayProteinsReceptor SignalingRegulationResearchRetinal Ganglion CellsRisk FactorsRodentRoleSignal PathwaySignal TransductionStressStrokeSurfaceTRPV channelTestingTimeVDAC1 geneVisionWeight LiftingWild Type Mouseacute stressbasecell injurycytokineendoplasmic reticulum stressimprovedinsightinstrumentischemic injurymouse modelneuroinflammationneurotoxicnovelpressurereceptorresponseretinal damageretinal ganglion cell degenerationsensor
项目摘要
PROJECT SUMMARY
Glaucoma is the second leading cause of blindness, impacting 79.6 million worldwide 1. This blindness results
from the loss of retinal ganglion cells (RGCs) and is primarily linked to chronic ocular hypertension (OHT).
Because of gaps in our understanding of the molecular pathways linking OHT with RGC loss, the only current
clinical strategy to slow glaucoma progression is to lower intraocular pressure (IOP). This strategy has serious
limitations as it does not stop the disease and has a high proportion of non-responders 2.
Elevation of IOP varies in magnitude and disrupts RGCs in several ways. High elevation (above systolic blood
pressure) causes an acute and severe ischemic injury in these neurons, more common in closed-angle
glaucoma, while lower magnitude chronic IOP elevations affect them slowly over time. Acute ischemic injury is
similar to a stroke that activates pressure-sensitive calcium channels, induces oxidative and ER stresses, ATP
release via activated Panx1/Cx hemichannels, and obstructs axonal transport3. More recent studies have
revealed that the activation of the endogenous inflammasome and subsequent formation of GasderminD pores
is a primary mechanism in neuronal dysfunction and pyroptotic death in ischemic OHT injury models 4, 5. In
contrast, episodes of sub-ischemic low level but chronic IOP elevations can cause glaucoma despite being non-
injurious short term6. In addition to these two modalities, rapid IOP elevation “spikes” below ischemic levels have
been shown to induce RGC dysfunction and glaucomatous degeneration in both human and rodent eyes7, 8. In
people, such pressure spikes can be induced by surgery and drugs and by activities such as eye rubbing, playing
wind instruments, head down exercising, heavy weight lifting, and frequent caffeine intake, which have been
linked to higher glaucoma risk2. However, the mechanisms causing RGC injury by such relatively low amplitude
but rapid and recurring spiking IOP fluctuations are poorly understood.
In this project, I utilize a model of sub-ischemic OHT spikes (SIOHS) to investigate early RGC-damaging
pathways and their role in glaucomatous RGC degeneration. My main focus is on the mechanism linking mild
acute stress by sub-ischemic OHT spikes with the functional deficit and RGC loss. In this project, I will test the
hypothesis that overactivation of mechanosensitive channels on the cell surface of RGCs challenged by IOP
spikes initiates metabolic stress and eventual loss via the activity of endogenous inflammasome.
To examine this, I will determine 1. the role of endogenous neuroinflammation in RGC dysfunction and death
following SIOHS, and 2. Test if cell surface TLRPV4 receptor signaling pathway is specifically responsive to
SIOHS events.
项目概要
青光眼是导致失明的第二大原因,影响全球 7,960 万人1。这种失明会导致
视网膜神经节细胞 (RGC) 损失所致,主要与慢性高眼压 (OHT) 有关。
由于我们对 OHT 与 RGC 损失之间的分子途径的理解存在差距,目前唯一的研究
减缓青光眼进展的临床策略是降低眼内压(IOP),这种策略具有严重的后果。
局限性,因为它不能阻止疾病,并且无反应者比例很高 2。
眼压升高的幅度各不相同,并以多种方式破坏 RGC。 高眼压(高于收缩压)。
压力)会导致这些神经元发生急性和严重的缺血性损伤,在闭角型疾病中更常见
青光眼,而较低程度的慢性眼压升高会随着时间的推移缓慢地影响它们。
类似于中风,激活压力敏感钙通道,诱导氧化和内质网应激,ATP
最近的研究表明,通过激活的 Panx1/Cx 半通道释放,并阻碍轴突运输。
揭示了内源性炎症小体的激活以及随后 GasderminD 孔的形成
是缺血性 OHT 损伤模型中神经元功能障碍和焦亡的主要机制 4, 5。
相比之下,亚缺血性低水平但慢性眼压升高的发作可导致青光眼,尽管不是
除了这两种方式外,眼压快速升高至低于缺血水平也有损害。
已被证明会引起人类和啮齿动物眼睛的 RGC 功能障碍和青光眼变性7, 8。
人们,这种压力峰值可能是由手术、药物以及揉眼、玩耍等活动引起的
管乐器、低头运动、举重以及经常摄入咖啡因,这些都是
与较高的青光眼风险相关2 然而,这种相对较低的幅度导致 RGC 损伤的机制。
但人们对快速且反复出现的眼压波动知之甚少。
在这个项目中,我利用亚缺血性 OHT 尖峰 (SIOHS) 模型来研究早期 RGC 损伤
我主要关注的是与轻度 RGC 变性相关的机制。
亚缺血性 OHT 引起的急性应激伴随功能缺陷和 RGC 损失。
假设 RGC 细胞表面的机械敏感通道受到 IOP 的挑战
峰值通过内源性炎症小体的活动引发代谢应激并最终损失。
为了验证这一点,我将确定 1. 内源性神经炎症在 RGC 功能障碍和死亡中的作用
遵循 SIOHS,以及 2. 测试细胞表面 TLRPV4 受体信号通路是否对
SIOHS 活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Spurlock其他文献
Markus Spurlock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Spurlock', 18)}}的其他基金
Role and regulation of inflammasome in the intraocular pressure-induced injury of retinal ganglion cells
炎症小体在眼压所致视网膜神经节细胞损伤中的作用及调控
- 批准号:
10555191 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: