Quantitative framework to predict CTEPH surgical outcome from imaging

通过影像学预测 CTEPH 手术结果的定量框架

基本信息

  • 批准号:
    10389736
  • 负责人:
  • 金额:
    $ 3.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-23 至 2024-01-22
  • 项目状态:
    已结题

项目摘要

Project Summary The proposal “Quantitative framework to predict CTEPH surgical outcome from imaging” has a long term objective of improving matching of Chronic Thromboembolic Pulmonary Hypertension (CTEPH) patients to their optimum therapy. Currently, advancement of this goal is limited by the lack of quantitative tools and metrics available to physicians to standardize evaluation of patient disease seen on imaging. In this proposal, we aim to tackle two different aspects of this problem. First, we aim to develop metrics to comprehensively quantify disease from imaging in a manner that informs disease severity. In this first aim, we are using dual- energy CT images to capture, from a single study, both the amount and location of vascular obstruction, perfusion deficit, and their relationship to one another. These metrics will be robustly designed to incorporate all levels of the vasculature (proximal to distal), to capture a range of occlusion severities, and to use location weightings based on surgical treatment accessibility. The utility of the metrics will be in their ability to inform both pre and post operative invasive hemodynamics. Our second aim of the proposal is to utilize CT pulmonary angiograms to predict the surgical accessibility of patient disease. We will train convolutional neural networks to predict the vascular location (and therefore surgical accessibility) of CTEPH using the UCSD surgical disease level classification. Neural networks will greatly aid in systematic prediction of disease location, since they can analyze images without data loss, and can also incorporate both clinical and imaging data. Because UCSD performs the highest volume of pulmonary thromboendarterectomy surgeries (a surgery to remove the CTEPH vascular obstructions) in the world, we are the only institution that has the required number of pre- operative images and gold standard (surgically confirmed) assessed surgical disease level classifications to train and evaluate a neural network approach. In future work, these tools can be combined to rapidly, systematically, and quantitatively evaluate CTEPH patients. With these metrics that standardize evaluation, we will be able to quantify factors that contribute to CTEPH phenotypes and determine which of these imaging phenotypes are most responsive to surgery.
项目概要 “通过影像预测 CTEPH 手术结果的定量框架”提案具有长期性 改善慢性血栓栓塞性肺动脉高压 (CTEPH) 患者与 目前,由于缺乏定量工具和方法,这一目标的进展受到限制。 医生可用于标准化影像学评估患者疾病的指标。 我们的目标是解决这个问题的两个不同方面,首先,我们的目标是制定全面的指标。 通过成像对疾病进行量化,以了解疾病的严重程度。在第一个目标中,我们使用双重技术。 能量 CT 图像可从单个研究中捕获血管阻塞的数量和位置, 灌注不足以及它们之间的关系将经过严格设计以纳入。 脉管系统的所有级别(近端到远端),捕获一系列闭塞严重程度,并使用位置 基于手术治疗可及性的权重将在于其提供信息的能力。 我们该提案的第二个目标是利用肺部 CT 进行术前和术后侵入性血流动力学分析。 我们将训练卷积神经网络。 使用 UCSD 手术预测 CTEPH 的血管位置(以及手术可及性) 疾病级别分类将极大地帮助系统预测疾病位置,因为 它们可以在不丢失数据的情况下分析图像,还可以合并临床和成像数据。 加州大学圣地亚哥分校进行了最多数量的肺血栓内膜切除术(一种切除血栓的手术) CTEPH 血管阻塞)在世界上,我们是唯一一家拥有所需数量的预 手术图像和金标准(手术证实)评估手术疾病级别分类 在未来的工作中,可以将这些工具结合起来以快速训练和评估神经网络方法。 通过这些标准化评估的指标,我们可以系统地、定量地评估 CTEPH 患者。 将能够量化导致 CTEPH 表型的因素并确定这些成像中的哪些 表型对手术最敏感。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth M. Bird其他文献

Elizabeth M. Bird的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth M. Bird', 18)}}的其他基金

Quantitative framework to predict CTEPH surgical outcome from imaging
通过影像学预测 CTEPH 手术结果的定量框架
  • 批准号:
    10676727
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:

相似国自然基金

地表与大气层顶短波辐射多分量一体化遥感反演算法研究
  • 批准号:
    42371342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
  • 批准号:
    72361020
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
  • 批准号:
    52372329
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
  • 批准号:
    12361074
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
  • 批准号:
    10663718
  • 财政年份:
    2023
  • 资助金额:
    $ 3.97万
  • 项目类别:
Quantitative framework to predict CTEPH surgical outcome from imaging
通过影像学预测 CTEPH 手术结果的定量框架
  • 批准号:
    10676727
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
Characterizing Motor Unit Mechanics and Muscle Contractile Properties In Vivo
表征体内运动单位力学和肌肉收缩特性
  • 批准号:
    10527926
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
Characterizing Motor Unit Mechanics and Muscle Contractile Properties In Vivo
表征体内运动单位力学和肌肉收缩特性
  • 批准号:
    10704186
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
  • 批准号:
    10383494
  • 财政年份:
    2022
  • 资助金额:
    $ 3.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了