The Role of Yes Associated Protein (YAP) in Hypertrophic Cardiomyopathy
Yes 相关蛋白 (YAP) 在肥厚性心肌病中的作用
基本信息
- 批准号:10389312
- 负责人:
- 金额:$ 3.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAffectBiochemicalBiomechanicsCardiacCardiac MyocytesCardiomyopathiesCardiovascular DiseasesCell NucleusCellsClinicalCytoskeletonDesminDevelopmentDiseaseElementsEnvironmentEventExhibitsFibrosisGenerationsGrowthHeartHeart DiseasesHomeostasisHumanHypertrophic CardiomyopathyHypertrophyIn VitroIndividualInheritedKineticsKnowledgeLabelLeadMeasuresMechanical StressMechanicsMediatingMicrotubulesModelingMolecularMorphologyMutationMyosin ATPaseNuclearNuclear ProteinOrganOrgan SizePathologicPathway interactionsPharmaceutical PreparationsPhenotypePoint MutationProductionProtein DynamicsProteinsRegulationResearchResearch TrainingRoleSignal TransductionSignaling ProteinTestingTherapeuticTractionTroponindisease phenotypeextracellulargenetic regulatory proteininduced pluripotent stem cell derived cardiomyocytesinsightmechanical signalmutantmyosin-binding protein Cnon-muscle myosin heavy chain-Bnoveloptogeneticsresponsetooltranscriptometransmission process
项目摘要
Project Summary/Abstract
Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease – affecting 1 in
500 individuals. Advanced forms of the disease clinically present with hypercontractility, hypertrophy
(enlargement of the organ and individual cardiomyocytes) and fibrosis. Several single-point mutations in b-
myosin heavy chain (MYH7), Myosin Binding Protein C (MYBPC3), and Troponin (cTn) have been associated
with HCM and increased contractility at the organ level. However, the kinetics at the molecular level remain
unclear, as different sarcomeric protein mutations can result in increased, decreased, or unchanged force
production. A knowledge gap persist in understanding how these altered kinetics at the molecular level lead to
the more advanced hypertrophic phenotype of HCM at the cellular level. Interestingly, the Hippo Pathway has
been demonstrated to be activated during developmental growth, quiescent during cardiac homeostasis, and
reactivated in pathological growth (i.e. HCM). However its involvement in the disease, in particular the initiation
of the hypertrophic phenotype, is poorly understood. Here, we aim to understand whether homeostatic
mechanical signaling through the canonical growth regulator, Hippo-YAP, is altered 1) by changes in the
biomechanics of single HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We
propose to use human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) genetically edited to
harbor point mutations associated with HCM, as a reduce ordered model to study the relationship between
mechanical signaling and hypertrophic growth. We will modulate mechanical stresses (i.e. diseased conditions)
in healthy and diseased cardiomyocytes by treatment with inotropic drugs and culture in fibrotic-like stiff
conditions and track the resulting signaling events by fluorescently labeling the key regulatory protein of the
Hippo pathway (YAP). To further elucidate the mechanism by which YAP is contributing to the phenotypes of
HCM we have developed a novel optogenetic tool, termed OptoYAP, which provides full temporal and spatial
control of the Hippo pathway. Lastly we aim to understand the mechanism behind the reactivation of YAP in
pathological conditions by perturbing the mechanical signaling by the nucleus. We hypothesize that 1) changes
in force production alter the homeostatic mechano-signaling of the Hippo pathway to initiate cellular
hypertrophy and 2) subsequent changes to the extracellular environment (stiffening) compounds this effect
leading to a feedforward signal progressing the disease phenotypes. 3) pathological YAP signaling is driven by
excessive force transmission by the cytoskeleton resulting in nuclear deformation. Our results will provide
insights into HCM progression and provide a testbed for therapeutic options in treating HCM.
项目概要/摘要
肥厚型心肌病 (HCM) 是最常见的遗传性心血管疾病 - 影响 1 %
500 名晚期患者临床表现为收缩过度、肥大。
(器官和单个心肌细胞增大)和纤维化。b-中的几个单点突变。
肌球蛋白重链 (MYH7)、肌球蛋白结合蛋白 C (MYBPC3) 和肌钙蛋白 (cTn) 相关
然而,分子水平上的动力学仍然存在。
尚不清楚,因为不同的肌节蛋白突变可能导致力量增加、减少或不变
在理解这些分子水平上的动力学改变如何导致生产方面仍然存在知识差距。
HCM 在细胞水平上更先进的肥厚表型。
已被证明在发育生长期间被激活,在心脏稳态期间处于静止状态,并且
在病理性生长(即 HCM)中重新激活,但它参与了疾病,特别是起始。
对于肥大表型的影响,人们知之甚少。在这里,我们的目的是了解体内平衡是否存在。
通过经典生长调节剂 Hippo-YAP 的机械信号传导会因 1) 的变化而改变
单个 HCM 突变心肌细胞的生物力学和 2) 通过机械环境的改变。
提议使用经过基因编辑的人类诱导多能干细胞衍生的心肌细胞(hiPSC-CM)
含有与 HCM 相关的点突变,作为研究之间关系的降序模型
我们将调节机械应力(即疾病状况)。
通过用正性肌力药物治疗和在纤维化样硬块中培养,在健康和患病的心肌细胞中产生
条件并通过荧光标记关键调节蛋白来跟踪由此产生的信号事件
Hippo 通路 (YAP) 进一步阐明 YAP 影响表型的机制。
HCM 我们开发了一种新型光遗传学工具,称为 OptoYAP,它提供了完整的时空信息
最后,我们的目标是了解 YAP 重新激活背后的机制。
我们通过扰乱细胞核的机械信号来调节病理状况:1)变化。
强制生产改变 Hippo 通路的稳态机械信号以启动细胞
肥大和 2) 随后细胞外环境的变化(硬化)加剧了这种效应
导致前馈信号进展疾病表型 3) 病理性 YAP 信号传导由以下因素驱动。
我们的结果将提供细胞骨架过度的力传递导致核变形。
深入了解 HCM 进展,并为治疗 HCM 的治疗方案提供试验台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orlando Chirikian其他文献
Orlando Chirikian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Orlando Chirikian', 18)}}的其他基金
The Role of Yes Associated Protein (YAP) in Hypertrophic Cardiomyopathy
Yes 相关蛋白 (YAP) 在肥厚性心肌病中的作用
- 批准号:
10607984 - 财政年份:2022
- 资助金额:
$ 3.9万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 3.9万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 3.9万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 3.9万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 3.9万 - 项目类别:
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 3.9万 - 项目类别: