Development of a carbon monoxide scavenging hemoprotein as a novel antidotal therapy to treat inhaled CO poisoning
开发一氧化碳清除血红蛋白作为治疗吸入性一氧化碳中毒的新型解毒疗法
基本信息
- 批准号:10387161
- 负责人:
- 金额:$ 7.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAerobicAffinityAmbulancesAmino AcidsAnimal ModelAntidotesAreaBehavior monitoringBindingBiochemicalBiologyBiophysicsBlood PressureCarbon MonoxideCarbon Monoxide PoisoningCarboxyhemoglobinCardiacCathetersCessation of lifeChemistryDataDevelopmentDiagnosisDiseaseEmergency department visitErythrocytesEscherichia coliExhibitsFunctional disorderGoalsHealthHemeHemeproteinsHemoglobinHumanHyperbaric OxygenIn VitroInhalationIntravenousInvestigationKnowledgeLaboratoriesLeadershipLigandsMediatingMedicineMentorsMetabolismMethodsMicrobeModelingMolecular CloningMorbidity - disease rateMusNeurocognitiveOrganOutcomeOxidation-ReductionOxygenPatient-Focused OutcomesPatientsPersonsPhysiciansPhysiologicalPoisoningPrincipal InvestigatorPropertyProtein EngineeringProteinsRecombinant ProteinsRecombinantsResearchSafetyScientistSignal TransductionSiteSite-Directed MutagenesisSoilSpectrum AnalysisSurvivorsTechnical ExpertiseTestingTherapeuticToxic effectTrainingUnited StatesVariantWorkautooxidationbasecareercareer developmentchemical stabilityclinically relevantconventional therapydrug developmentexperienceheart rate monitorhemodynamicshuman diseasehuman modelimprovedin vivolong-term sequelaemicrobialmortalitymouse modelnanomolarnovelnovel therapeuticspoint of carepre-clinicalpreventprotein metabolismskillstranscription factortranslational medicine
项目摘要
PROJECT SUMMARY/ABSTRACT
Accidental carbon monoxide (CO) poisoning is the leading cause of human poisoning in the United States,
resulting in approximately 50,000 cases and at least 1,500 deaths annually. No point-of-care antidotal therapy
exists for CO poisoning to date, and conventional treatments are limited to inhalation of 100% normobaric oxygen
or hyperbaric oxygen. While these therapies enhance CO clearance, delays in patient diagnosis and transport
contribute to excess morbidity and mortality. Consequently, a fast-acting CO scavenger that can be deployed in
the field, ambulance, or emergency room could significantly increase survival and long-term outcomes for
patients. Given that CO binds tightly to ferrous heme, our lab seeks to develop a hemoprotein-based CO
scavenger that can bind and eliminate CO as a novel therapy for CO poisoning. Based on preliminary studies
of recombinant hemoproteins, we have identified four key criteria for a safe and efficacious hemoprotein-based
CO scavenger: (1) high (nanomolar) CO affinity to maximize CO scavenging from physiological heme sites, (2)
CO selectivity to minimize competitive inhibition by oxygen binding, (3) thermal and chemical stability to
prevent heme release and adverse reactivity, and (4) redox stability of the Fe(II) heme to prevent autooxidation
to the inactive, Fe(III) heme state. Early investigations of the regulator of CO metabolism (RcoM) protein, a CO-
sensing transcription factor from soil microbes, suggest that this protein exhibits high CO affinity and
unprecedented selectivity for CO over oxygen. The primary objective of this proposal is to develop RcoM into a
safe and efficacious CO scavenger that will serve as an improved therapeutic treatment for CO poisoning. In
Aim 1, we will utilize in vitro spectroscopic methods developed in our lab to identify 1) the minimum functional
RcoM subunit, and 2) key amino acid residues that confer high CO affinity, selectivity, and heme stability. In
addition to characterizing basic biochemical properties, we will assess the ability of recombinantly expressed
RcoM variants to scavenge CO from hemoglobin in CO-saturated red blood cells in vitro. In Aim 2, we will
evaluate the safety and efficacy of two recombinant RcoM truncates in vivo. We will assess systemic and organ-
specific effects of intravenous RcoM delivery in healthy mice in vivo and quantify the ability of RcoM to reverse
hemodynamic collapse and prevent death in a preclinical mouse model of CO poisoning previously developed
in our laboratory. Completion of the proposed aims will advance our fundamental understanding of hemoprotein
ligand selectivity while also advancing the translational development of a novel antidotal therapy to treat inhaled
CO poisoning. These outcomes, in addition to career development, mentored training, and didactic coursework,
will ultimately provide me with the technical expertise, background knowledge, and leadership skills necessary
to accomplish my long-term academic career goal of directing a research team to study CO-dependent signaling
mechanisms relevant to human health and disease.
项目概要/摘要
意外一氧化碳 (CO) 中毒是美国人类中毒的主要原因,
每年导致约 50,000 例病例和至少 1,500 人死亡。无即时抗毒治疗
迄今为止存在一氧化碳中毒,常规治疗仅限于吸入100%常压氧
或高压氧。虽然这些疗法增强了 CO 清除率,但延迟了患者诊断和转运
导致发病率和死亡率过高。因此,一种快速作用的 CO 清除剂可以部署在
现场、救护车或急诊室可以显着提高患者的生存率和长期结果
患者。鉴于 CO 与亚铁血红素紧密结合,我们的实验室致力于开发基于血红素蛋白的 CO
可以结合并消除 CO 的清除剂,作为 CO 中毒的新型治疗方法。根据初步研究
对于重组血红素蛋白,我们确定了安全有效的基于血红素蛋白的四个关键标准
CO 清除剂:(1) 高(纳摩尔)CO 亲和力,可最大限度地从生理血红素位点清除 CO,(2)
CO 选择性可最大限度地减少氧结合造成的竞争性抑制,(3) 热稳定性和化学稳定性
防止血红素释放和不良反应性,以及 (4) Fe(II) 血红素的氧化还原稳定性,以防止自动氧化
到非活性的 Fe(III) 血红素状态。 CO 代谢调节蛋白 (RcoM) 的早期研究,该蛋白是一种 CO-
来自土壤微生物的传感转录因子表明该蛋白质具有高 CO 亲和力
对 CO 的选择性超过对氧气的前所未有的选择性。该提案的主要目标是将 RcoM 发展成为
安全有效的一氧化碳清除剂,将作为一氧化碳中毒的改进治疗方法。在
目标 1,我们将利用我们实验室开发的体外光谱方法来识别 1) 最小功能
RcoM 亚基和 2) 赋予高 CO 亲和力、选择性和血红素稳定性的关键氨基酸残基。在
除了表征基本生化特性外,我们还将评估重组表达的能力
RcoM 变体可在体外从 CO 饱和红细胞的血红蛋白中清除 CO。在目标 2 中,我们将
评估两种重组 RcoM 截短体的体内安全性和有效性。我们将评估系统和器官
静脉注射 RcoM 递送对健康小鼠体内的具体影响并量化 RcoM 逆转的能力
先前开发的一氧化碳中毒临床前小鼠模型中的血流动力学崩溃并防止死亡
在我们的实验室。完成所提出的目标将增进我们对血红素蛋白的基本理解
配体选择性,同时还促进了治疗吸入性肺炎的新型解毒疗法的转化开发
一氧化碳中毒。这些成果,除了职业发展、指导培训和教学课程外,
最终将为我提供必要的技术专业知识、背景知识和领导技能
实现我指导研究团队研究 CO 依赖性信号传导的长期学术职业目标
与人类健康和疾病相关的机制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Ryan Dent其他文献
Matthew Ryan Dent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Ryan Dent', 18)}}的其他基金
Optimization of a carbon monoxide (CO) sensing hemoprotein for applications as an antidote for CO poisoning and a biosensor for CO detection in living cells
优化一氧化碳 (CO) 传感血红蛋白作为 CO 中毒解毒剂的应用和用于活细胞中 CO 检测的生物传感器
- 批准号:
10643257 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
相似国自然基金
NEDD4介导IGFBP7泛素化参与有氧运动抑制泛凋亡改善心肌缺血再灌注损伤的机制研究
- 批准号:82302873
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动及HDAC4/5对骨骼肌细胞代谢酶乙酰化的影响及其在改善胰岛素抵抗过程中机制研究
- 批准号:32371186
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
有氧运动调控FDX1和SLC31A1抑制铜死亡信号通路改善吡柔比星所致心脏损伤作用及机制研究
- 批准号:82302847
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PXDN-周细胞-血管渗漏轴探讨有氧运动改善肺血管重构机制研究
- 批准号:82370422
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
- 批准号:
10717825 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
- 批准号:
10642243 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Mitigating Developmental Neurotoxicity Through Maternal and Offspring Exercise
通过母亲和后代运动减轻发育神经毒性
- 批准号:
10725969 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10464289 - 财政年份:2022
- 资助金额:
$ 7.68万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10684663 - 财政年份:2022
- 资助金额:
$ 7.68万 - 项目类别: