Metabolic control of exit from naïve pluripotency
退出幼稚多能性的代谢控制
基本信息
- 批准号:10387708
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2026-04-14
- 项目状态:未结题
- 来源:
- 关键词:ATP Citrate (pro-S)-LyaseAcetatesAcetyl Coenzyme AAcetylationAffectBindingBiochemical ReactionBiological AssayC-terminal binding proteinCell Fate ControlCellsChIP-seqChemicalsChromatinCitratesClinicalCompetenceComplexCytoplasmDataDepositionDevelopmentDiseaseEmbryonic DevelopmentEnzymesEquilibriumExcisionExhibitsGene ExpressionGene Expression RegulationGeneticGenetic TranscriptionGenomicsGlucoseGoalsHistone AcetylationLIF geneLaboratoriesLinkMEKsMalatesMass Spectrum AnalysisMeasuresMediatingMemorial Sloan-Kettering Cancer CenterMetabolicMetabolic ControlMetabolic PathwayMetabolismMitochondriaModificationMusNADHOutputOxidation-ReductionPharmacologyPhysiciansProcessPyruvateRegulationReporterReportingResearch ProposalsScientistShapesSignal TransductionSupplementationTestingTrainingTranscription RepressorWestern BlottingWorkantiporterbasecareercell fate specificationcell typechromatin remodelingcitrate carriercofactordefined contributiondevelopmental diseaseembryonic stem cellexperimental studygenetic approachgenomic locushistone modificationinsightmutantpluripotencypluripotency factorprogramsself-renewalsensorstem cell differentiationstem cellstool
项目摘要
PROJECT SUMMARY
Cellular metabolic pathways exhibit remarkable plasticity across different cell types in both development and
disease. In addition to accompanying changes in cell state, metabolic rewiring has been shown to drive cell fate
decisions programs by altering the chromatin landscape. The deposition of chemical modifications that decorate
chromatin requires the intermediates of metabolic pathways, and several enzymes that remove these marks use
metabolites as part of their enzymatic reaction. Therefore, fluctuations in metabolite levels have the capacity to
shape chromatin to effect cell fate-specific gene expression, but the metabolic changes that drive chromatin
reorganization and the enzymes that mediate metabolic control of cell fate during early development remain
largely unknown. We have previously identified specific metabolites that control self-renewal of mouse embryonic
stem cells (ESCs). Whether metabolism is altered as ESCs exit the self-renewing pluripotent state, and whether
these metabolic changes are required for multi-lineage differentiation remains an open question.
The goal of this research proposal is to characterize the metabolic rewiring that occurs during exit from
naïve pluripotency and to determine the mechanisms by which this rewiring controls mouse ESC
differentiation. Our preliminary data indicate that exit from naïve pluripotency is accompanied by an increase
in the mitochondrial export of citrate. In Aim 1, we will use genetic and pharmacologic approaches to target the
mitochondrial citrate transporter SLC25A1 or the downstream citrate-catabolizing enzyme ATP-citrate lyase to
test the hypothesis that mitochondrially-derived citrate is required for early differentiation. We will investigate
whether this metabolic change regulates cell fate through the deposition of citrate-derived histone acetylation
marks. Preliminary data also shows changes in cellular redox state marked by an increase in the cytosolic
NAD+/NADH ratio during early differentiation. In Aim 2, we will determine if this metabolic change is required for
exit from naïve pluripotency by modulating the NAD+/NADH ratio using pharmacological or genetic tools. Further
experiments will identify the mechanism by which cellular redox state signals to the chromatin landscape to
dictate cell fate. These studies will reveal the mechanisms of metabolic control during exit from naïve pluripotency
and will provide critical insight into how metabolic regulation contributes to changes in cell identity during
embryonic development. The work and training plan outlined in this proposal will be completed in the laboratory
of Dr. Lydia Finley with the co-advisement of Dr. Kristian Helin at Memorial Sloan Kettering Cancer Center and
will ideally prepare the applicant for further clinical training and a career as an independent physician-scientist.
项目概要
细胞代谢途径在不同细胞类型的发育和发育过程中表现出显着的可塑性
除了伴随的细胞状态变化之外,代谢重新布线已被证明可以驱动细胞命运。
通过改变染色质景观来决定程序,装饰化学修饰的沉积。
染色质需要代谢途径的中间体,并且使用几种酶来去除这些标记
代谢物作为其酶反应的一部分,因此,代谢物水平的波动有能力。
塑造染色质以影响细胞命运特异性基因表达,但驱动染色质的代谢变化
重组和介导早期发育过程中细胞命运代谢控制的酶仍然存在
我们之前已经鉴定出控制小鼠胚胎自我更新的特定代谢物。
干细胞 (ESC) 的新陈代谢是否随着 ESC 退出自我更新的多能状态而改变,以及是否会改变。
多谱系分化所需的这些代谢变化仍然是一个悬而未决的问题。
本研究计划的目标是描述退出过程中发生的代谢重新布线的特征。
幼稚多能性并确定这种重新布线控制小鼠 ESC 的机制
我们的初步数据表明,幼稚多能性的退出伴随着增加。
在目标 1 中,我们将使用遗传和药理学方法来靶向柠檬酸的线粒体输出。
线粒体柠檬酸转运蛋白 SLC25A1 或下游柠檬酸分解酶 ATP-柠檬酸裂解酶
检验早期分化需要线粒体来源的柠檬酸的假设。
这种代谢变化是否通过柠檬酸盐衍生的组蛋白乙酰化的沉积来调节细胞命运
初步数据还显示细胞氧化还原状态的变化,其标志是胞质的增加。
在目标 2 中,我们将确定早期分化期间的 NAD+/NADH 比率是否需要这种代谢变化。
通过使用药理学或遗传工具调节 NAD+/NADH 比率进一步退出幼稚多能性。
实验将确定细胞氧化还原状态向染色质景观发出信号的机制
这些研究将揭示退出幼稚多能性期间的代谢控制机制。
并将提供关于代谢调节如何促进细胞身份变化的重要见解
本提案中概述的工作和培训计划将在实验室中完成。
纪念斯隆·凯特琳癌症中心的 Lydia Finley 博士和 Kristian Helin 博士的共同顾问
将为申请人提供进一步的临床培训和作为独立医师科学家的职业生涯的理想准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Tonnu Jackson其他文献
Benjamin Tonnu Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Tonnu Jackson', 18)}}的其他基金
Metabolic control of exit from naïve pluripotency
退出幼稚多能性的代谢控制
- 批准号:
10625259 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
相似国自然基金
微囊泡介导肺泡上皮祖细胞醋酸盐代谢重编程向AT2细胞分化促进ARDS炎症修复的作用机制
- 批准号:82360020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肝癌微环境富集醋酸盐增强内皮细胞乙酰化修饰并促进血管生成
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
络合萃取法提取生物油酚类化合物的效能及机理研究
- 批准号:21206142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Metabolic adaptation enables cisplatin resistance and inhibits tumor immunity
代谢适应使顺铂耐药并抑制肿瘤免疫
- 批准号:
10942977 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Spatial Acetyl-CoA metabolism as a regulator of Hallmarks of Aging
空间乙酰辅酶A代谢作为衰老标志的调节剂
- 批准号:
10901039 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Acetate as a Mediator of Hematopoietic Stem Cell Inflammatory Response and Clonal Hematopoiesis
乙酸作为造血干细胞炎症反应和克隆造血的介质
- 批准号:
10464508 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Metabolic control of exit from naïve pluripotency
退出幼稚多能性的代谢控制
- 批准号:
10625259 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别: