High-resolution spectroscopic imaging with infrared nonlinear optical (IR-NLO) microscopy
使用红外非线性光学 (IR-NLO) 显微镜进行高分辨率光谱成像
基本信息
- 批准号:10378534
- 负责人:
- 金额:$ 21.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedBiologicalBiologyCellsCellular StructuresChemicalsClinicalCultured CellsDataDevelopmentDiseaseExhibitsFingerprintFourier TransformFrequenciesGenerationsGoalsImageImaging DeviceImaging TechniquesImaging technologyLabelLaboratoriesLasersLateralLightMapsMeasurableMethodsMicroscopeMicroscopyModalityMolecularMolecular ProfilingOpticsPathologyPerformancePropertyRaman Spectrum AnalysisResearchResolutionSamplingScanningSchemeScienceSignal TransductionSourceSpecimenSpectrum AnalysisSpeedStructureSumSystemTechniquesTechnologyTestingTimeTissue imagingTissuesabsorptionbasebiomedical imagingchemical bondchemical groupdiagnostic valuehigh resolution imagingimage reconstructionimaging approachimaging modalityimaging platformimaging propertiesimaging studyimprovedinfrared microscopyinnovationmicroscopic imagingnoveloptical imagingprogramsspectroscopic imagingtechnology validationtoolvibration
项目摘要
Project Summary
A genuine label-free imaging technology, vibrational microscopy provides maps of cells and tissues
with exceptionally high chemical contrast as it directly probes the fundamental vibrational modes of
samples. Vibrational imaging approaches include IR-absorption micro-spectroscopy and confocal
Raman microscopy, methods that have been successfully commercialized (a growing 500 million
dollar market) and are now common tools of inquiry found in analytical and biological laboratories.
Over the past four decades, these techniques have had a measurable impact in the fields of biology
and biomedicine, offering a spatially resolved assessment of healthy and diseased tissues from a
molecular perspective. This proposal aims to significantly improve the capabilities of vibrational
microscopy. We propose a new imaging approach that merges the desirable properties of IR
absorption microscopy with some of the unique properties of coherent, nonlinear optical (NLO)
excitation of molecules. This novel IR-NLO technique improves the spatial resolution of IR absorption
microscopy by tenfold, while offering higher sensitivity to fingerprint molecular vibrations relative to
Raman-based microscopy methods.
Our team is comprised of experts in coherent Raman scattering microscopy and IR
microspectroscopic imaging. Our innovation makes it possible to rapidly acquire IR absorption images
of fingerprint vibrational modes with a resolution of 0.5 micrometer or better. The preliminary data
shows that the IR-NLO approach can be successfully adopted in a rapid laser-scanning microscope,
allowing convenient vibrational imaging of tissue specimens. In our proposal we develop, test, and
improve the new IR-NLO technology. The validation of the technology is achieved through extensive
biomedical imaging studies and comparison with the state of the art IR microscopy available today.
The proposed program tackles a major challenge in IR spectroscopic microscopy, namely the
improvement of imaging resolution. This new capability is significant, as the higher resolution enables
the identification of sub-micrometer intra- and extra-cellular structures in the tissue, which hitherto
have remained invisible in IR-imaging. The high-resolution imaging property thus dramatically
improves the diagnostic capabilities of the technique. By setting a new resolution standard for
fingerprint vibrational imaging, the IR-NLO technology is likely to have a significant impact in tissue
imaging and can enable its use in both research and clinical domains for pathology.
项目摘要
振动显微镜提供了真正的无标签成像技术,可提供细胞和组织的地图
具有异常高的化学对比度,因为它直接探测了基本振动模式
样品。振动成像方法包括IR吸收微光谱和共聚焦
拉曼显微镜,成功商业化的方法(一种增长了5亿
美元市场)现在是分析和生物实验室中发现的常见探究工具。
在过去的四十年中,这些技术对生物学领域产生了可衡量的影响
和生物医学,从A
分子观点。该建议旨在显着提高振动的能力
显微镜。我们提出了一种合并IR的理想特性的新成像方法
吸收显微镜具有连贯的非线性光学(NLO)的某些独特特性
分子的激发。这种新型的IR-NLO技术改善了IR吸收的空间分辨率
显微镜通过十倍,同时对指纹分子振动具有更高的敏感性
基于拉曼的显微镜方法。
我们的团队由连贯的拉曼散射显微镜和IR的专家组成
微光谱成像。我们的创新使快速获取IR吸收图像成为可能
指纹振动模式的分辨率为0.5微米或更高。初步数据
表明可以在快速激光扫描显微镜中成功采用IR-NLO方法,
允许组织样品的方便振动成像。在我们的建议中,我们开发,测试和
改善新的IR-NLO技术。该技术的验证是通过广泛的
生物医学成像研究和与当今可用的最新IR显微镜的比较。
拟议的程序应对红外光谱显微镜的重大挑战,即
改进成像分辨率。这种新功能很重要,因为较高的分辨率可以实现
在组织中的亚微米计内和细胞外结构的鉴定,迄今为止
在IR成像中仍然是看不见的。高分辨率成像属性因此很大
提高该技术的诊断能力。通过为新的分辨率标准设定
指纹振动成像,IR-NLO技术可能对组织产生重大影响
成像,并可以在研究和临床领域中用于病理学。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coherent Raman scattering microscopy: capable solution in search of a larger audience.
- DOI:10.1117/1.jbo.26.6.060601
- 发表时间:2021-06
- 期刊:
- 影响因子:3.5
- 作者:Prince RC;Potma EO
- 通讯作者:Potma EO
Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC).
- DOI:10.1016/j.jtos.2020.04.012
- 发表时间:2020-07
- 期刊:
- 影响因子:6.4
- 作者:Kim, Sun Woong;Rho, Chang Rae;Kim, Jinseor;Xie, Yilu;Prince, Richard C.;Mustafa, Khawla;Potma, Eric O.;Brown, Donald J.;Jester, James, V
- 通讯作者:Jester, James, V
Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas.
- DOI:10.1021/acs.nanolett.2c02040
- 发表时间:2022-05
- 期刊:
- 影响因子:10.8
- 作者:Shamsul Abedin;Yong Li;A. Sifat;Khokan Roy;E. Potma
- 通讯作者:Shamsul Abedin;Yong Li;A. Sifat;Khokan Roy;E. Potma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Olaf Potma其他文献
Eric Olaf Potma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Olaf Potma', 18)}}的其他基金
BROADBAND FOCUSING FOR EXTREME MULTIMODAL MICROSCOPY
用于极端多模态显微镜的宽带聚焦
- 批准号:
10573976 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Rapid infrared biomedical imaging at high pixel density with a sCMOS camera
使用 sCMOS 相机进行高像素密度快速红外生物医学成像
- 批准号:
10195865 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
Rapid infrared biomedical imaging at high pixel density with a sCMOS camera
使用 sCMOS 相机进行高像素密度快速红外生物医学成像
- 批准号:
10411952 - 财政年份:2021
- 资助金额:
$ 21.85万 - 项目类别:
High-resolution spectroscopic imaging with infrared nonlinear optical (IR-NLO) microscopy
使用红外非线性光学 (IR-NLO) 显微镜进行高分辨率光谱成像
- 批准号:
9903403 - 财政年份:2019
- 资助金额:
$ 21.85万 - 项目类别:
FLUORESCENCE CORRELATION SPECTROSCOPY OF LABELED DEXTRANS
标记葡聚糖的荧光相关光谱
- 批准号:
7956536 - 财政年份:2009
- 资助金额:
$ 21.85万 - 项目类别:
相似国自然基金
MUC15通过整合素调控胰腺癌细胞迁移和侵袭的力学生物学机制
- 批准号:12372316
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
全氟化合物暴露通过影响脑结构导致情绪精神障碍的神经生物学机制研究
- 批准号:82371924
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
益气开秘方通过上调酪氨酸激酶磷酸化改善肠上皮屏障功能治疗慢传输型便秘的生物学效应研究
- 批准号:82305235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP通过调控处理小体形成促进结直肠癌发生的生物学功能与分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于Piezo1介导的力学生物学通过抵抗DNA损伤促进胆管癌细胞生存的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DRUG DISCOVERY BY DIRECTED EVOLUTION IN MAMMALIAN CELLS
通过哺乳动物细胞定向进化发现药物
- 批准号:
10644749 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Programming of Resident Macrophages by the Brain Environment Following Transplantation
移植后大脑环境对常驻巨噬细胞的编程
- 批准号:
10790219 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Adapting and Scaling the Biotinkering Approach through a CoP Model
通过 CoP 模型调整和扩展生物修复方法
- 批准号:
10666229 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别:
Quantitative and function analysis platform for repetitive genes and gene isoforms in pluripotency regulation and differentiations
多能性调控和分化中重复基因和基因亚型的定量和功能分析平台
- 批准号:
10929710 - 财政年份:2023
- 资助金额:
$ 21.85万 - 项目类别: