Role of sulfide catabolism in ischemic brain injury
硫化物分解代谢在缺血性脑损伤中的作用
基本信息
- 批准号:10378758
- 负责人:
- 金额:$ 34.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcuteAddressAdenosine TriphosphateAttentionAttenuatedBioenergeticsBrainBrain Hypoxia-IschemiaBrain InjuriesBrain IschemiaCatabolismCellsCerebral IschemiaCerebrumCessation of lifeComplexConsumptionDependovirusElectron TransportElectronsEncephalopathiesEnvironmental HazardsEnzymesFailureFemaleFunctional disorderHistologicHomeostasisHumanHydrogen SulfideHypoxiaImpairmentIncubatedInhalationIschemiaIschemic Brain InjuryIschemic StrokeMammalian CellMediatingMetabolismMethodsMitochondriaMorbidity - disease rateMusNADHNeuraxisNeurologic DysfunctionsNeuronsNicotinamide adenine dinucleotideNitric OxideOutcomeOxidative PhosphorylationOxidesOxidoreductaseOxygenPathway interactionsPharmacologyPlayProductionQuinonesReactive Oxygen SpeciesReperfusion InjuryReperfusion TherapyResistanceRespirationRoleSeveritiesSpeedSulfidesTherapeuticThiosulfate Sulfurtransferasebasebrain cellcell injuryclinical practicecomplex IVdeprivationimprovedinhibitorknock-downmalemortalityneuronal survivalneurotoxicitynormoxiaoverexpressionoxidationpreconditioningpreservationpreventresponse
项目摘要
The brain is exquisitely sensitive to the lack of oxygen. Acute oxygen deprivation inhibits mitochondrial energy
production impairing the cellular integrity. Although ischemic brain injury is a leading cause of morbidity and
mortality, mechanism responsible for the ischemia-induced energy failure of the brain is incompletely
understood.
Hydrogen sulfide is an environmental hazard well known for its neurotoxicity. In mammalian cells, H2S is
produced by the transsulfuration pathway and is oxidized in mitochondria by sulfide oxidation enzymes
including sulfide quinone oxidoreductase (SQR). When oxygen is abundant, sulfide oxidation donates
electrons to the mitochondrial electron transport chain (ETC), thereby promoting adenosine triphosphate (ATP)
synthesis. In contrast, oxygen deprivation stimulates sulfide synthesis and hinders sulfide oxidation, leading to
sulfide accumulation. Accumulated sulfide inhibits ETC complex IV during ischemia and aggravate reperfusion
injury. Therefore, sulfide catabolism may play a pivotal role in the energy homeostasis during oxygen shortage
and cellular injury upon reoxygenation. However, role of sulfide catabolism on the bioenergetics of the brain
during acute oxygen deprivation has thus far attracted little attention. SQR is normally expressed at very low
levels in the central nervous system, explaining the particularly slow rate of sulfide consumption in the brain.
In preliminary studies, we observed that female mice had higher levels of SQR in the brain and were more
resistant to hypoxia than male mice, whereas, knockdown of brain SQR increased the sensitivity of female
mice to hypoxia. SQR overexpression in the brain of mice prevented neurologic dysfunction and death after
global cerebral ischemia and reperfusion (I/R). Pharmacological sulfide scavengers prevented ETC dysfunction
and improved energy production in human cells incubated in hypoxia or in the brains of mice subjected to
cerebral ischemia. Based on these observations, we hypothesize that preventing sulfide accumulation in the
brain either by enhanced sulfide oxidation or pharmacologic sulfide scavenger prevents ETC dysfunction
during oxygen shortage and attenuates ischemia/reperfusion injury of the brain. To address this hypothesis, we
propose: To determine the effects of enhanced sulfide oxidation on the severity of ischemic brain injury (Aim1),
to characterize the role of endogenous sulfide catabolism in the mitochondrial function and response to
ischemic brain injury (Aim 2), and to define the mechanism of the neuroprotective effects of sulfide oxidation
and therapeutic potential of sulfide scavenging after cerebral I/R. (Aim 3). Proposed studies are anticipated to
illuminate the critical role of sulfide in mitochondrial respiration and uncover a therapeutic potential of sulfide
catabolism in ischemic brain injury.
大脑对缺氧非常敏感。急性缺氧抑制线粒体能量
生产损害细胞完整性。尽管缺血性脑损伤是发病率和死亡率的主要原因
死亡率,导致大脑缺血引起的能量衰竭的机制不完全
明白了。
硫化氢是一种环境危害,因其神经毒性而闻名。在哺乳动物细胞中,H2S
由转硫途径产生,并在线粒体中被硫化物氧化酶氧化
包括硫化醌氧化还原酶(SQR)。当氧气充足时,硫化物氧化
电子到达线粒体电子传递链(ETC),从而促进三磷酸腺苷(ATP)
合成。相反,缺氧会刺激硫化物合成并阻碍硫化物氧化,从而导致
硫化物积累。缺血期间累积的硫化物抑制ETC复合体IV并加重再灌注
受伤。因此,硫化物分解代谢可能在缺氧期间的能量稳态中发挥关键作用
和再氧合时的细胞损伤。然而,硫化物分解代谢对大脑生物能的作用
迄今为止,急性缺氧期间很少引起关注。 SQR 通常表示为非常低
中枢神经系统中的水平,解释了大脑中硫化物消耗速度特别慢的原因。
在初步研究中,我们观察到雌性小鼠大脑中的 SQR 水平较高,并且
比雄性小鼠更能抵抗缺氧,而敲低大脑 SQR 则增加了雌性小鼠的敏感性
使小鼠缺氧。小鼠大脑中 SQR 过度表达可预防神经功能障碍和死亡
全脑缺血和再灌注(I/R)。药理学硫化物清除剂可预防 ETC 功能障碍
并改善了在缺氧条件下培养的人类细胞或遭受缺氧的小鼠大脑中的能量产生
脑缺血。基于这些观察,我们假设防止硫化物在
通过增强硫化物氧化或药物硫化物清除剂来预防 ETC 功能障碍
在缺氧期间并减轻大脑缺血/再灌注损伤。为了解决这个假设,我们
建议:为了确定增强的硫化物氧化对缺血性脑损伤严重程度的影响(目标1),
表征内源性硫化物分解代谢在线粒体功能和响应中的作用
缺血性脑损伤(目标 2),并确定硫化物氧化的神经保护作用机制
以及脑缺血再灌注后硫化物清除的治疗潜力。 (目标 3)。预计拟议的研究
阐明硫化物在线粒体呼吸中的关键作用并揭示硫化物的治疗潜力
缺血性脑损伤中的分解代谢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUMITO ICHINOSE其他文献
FUMITO ICHINOSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUMITO ICHINOSE', 18)}}的其他基金
Role of Sedation in the Post-Cardiac Arrest Neurological Recovery
镇静在心脏骤停后神经恢复中的作用
- 批准号:
10735115 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Role of sulfide catabolism in ischemic brain injury
硫化物分解代谢在缺血性脑损伤中的作用
- 批准号:
10588192 - 财政年份:2019
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8236893 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8463026 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8645697 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
7862033 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
IMPACT OF HYDROGEN SULFIDE ON OUTCOME OF CARDIAC ARREST AND CARDIOPULMONARY RESUS
硫化氢对心脏骤停和心肺复苏结果的影响
- 批准号:
8055816 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
Impact of nitric oxide synthase on myocardial dysfunction of sepsis
一氧化氮合酶对脓毒症心肌功能障碍的影响
- 批准号:
7618495 - 财政年份:2007
- 资助金额:
$ 34.97万 - 项目类别:
Impact of nitric oxide synthase on myocardial dysfunction of sepsis
一氧化氮合酶对脓毒症心肌功能障碍的影响
- 批准号:
7186477 - 财政年份:2007
- 资助金额:
$ 34.97万 - 项目类别:
Impact of nitric oxide synthase on myocardial dysfunction of sepsis
一氧化氮合酶对脓毒症心肌功能障碍的影响
- 批准号:
7418618 - 财政年份:2007
- 资助金额:
$ 34.97万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Stress Granule Formation in the Antiretroviral-Mediated Dysregulation of Oligodendrocyte Maturation in HIV-HAND
HIV-HAND 中抗逆转录病毒介导的少突胶质细胞成熟失调中的应激颗粒形成
- 批准号:
10762118 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Mechanisms of Trypsin Activation in Pancreatitis
胰腺炎中胰蛋白酶激活的机制
- 批准号:
10587286 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别: