Host-microbiome interactions shape the metabolic effects of ketogenic diets
宿主-微生物组的相互作用塑造生酮饮食的代谢效应
基本信息
- 批准号:10378146
- 负责人:
- 金额:$ 56.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-hydroxy-3-methylglutaryl-coenzyme AActinobacteria classAdipose tissueAdultAffectAnimal ModelAnimalsAntimicrobial EffectAreaBacteriaBacterial GenesBifidobacteriumBody Weight decreasedCarbohydratesCellsCollectionComplexDietEnteralEnterocytesEstersExtrahepaticFatty acid glycerol estersFutureGenesGeneticGenetic DeterminismGnotobioticGoalsGrowthHigh Fat DietHumanImmuneImmune systemIn VitroInflammatoryInsulin ResistanceInterventionIntestinesKetone BodiesKetonesKetosisLibrariesLipidsLiteratureMacronutrients NutritionMediatingMetabolicMetabolic DiseasesMetabolic syndromeMichiganMusMutagenesisObesityOral AdministrationPathway interactionsPharmacologyPhenotypePhysiologicalPositioning AttributeProbioticsProductionProtocols documentationPublishingResearchRodent ModelRoleSeriesShapesSourceSpecificityStructureTestingTissuesTransgenic MiceWorkbasebeta-Hydroxybutyratecarbohydrate metabolismdiet-induced obesityexperimental studygenetic manipulationglobal healthglucose tolerancegut bacteriagut inflammationgut microbiomegut microbiotahost microbiomehost microbiotahost-microbe interactionshuman diseasehuman modelimmune activationimmunoregulationimprovedinnovationketogenesisketogenic dietliver metabolismmetabolic phenotypemetabolomicsmicrobiomemicrobiome researchmouse geneticsmouse modelnovelprebioticsprogramsscreeningsugartool
项目摘要
Obesity and its associated metabolic diseases represent a global health crisis, affecting more than one third of US adults. Studies in humans and animal models indicate that very low-carbohydrate, high-fat ketogenic diets (KDs) promote weight loss, improve glucose tolerance, and decrease insulin resistance and intestinal inflammation. While the primary mechanisms involved are thought to be due to a shift in hepatic metabolism from carbohydrates to lipids, the role of extrahepatic cells in mediating the systemic effects of KDs remains unclear. The goal of this RO1 application (PA-19-056) is to test the hypothesis that diet-induced shifts in the host production of ketone bodies selectively inhibit the growth of gut bacteria leading to a decrease in immune cell activation and improved metabolic phenotypes. Our extensive Preliminary Results, together with the growing body of scientific literature in this area, provide strong support for the scientific premise of our hypothesis. This work is conceptually innovative as it shifts the focus from the direct impact of diet on the gut microbiota to the role of host-microbiota interactions in mediating the effects of common diets used to treat human disease. We believe that these studies are also technically innovative as we will leverage the paired genetic manipulation of the host and the gut microbiome, a general goal that remains elusive in the microbiome field for many areas of study. We will pursue the following Specific Aims: (Aim I) the use of a new transgenic mouse model to test the impact of enteric ketogenesis on the gut microbiota; (Aim II) the use of natural strain collections and transposon mutagenesis to evaluate the specificity and genetic determinants of bacterial sensitivity to ketone bodies; and (Aim III) the use of conventional and gnotobiotic mice to test the role of KD-associated bacterial immune activation in diet-induced obesity. This research plan represents a departure from the current focus of the gut microbiome field on macronutrients, expanding the scope of microbiome studies to assess the importance of host-microbiome interactions in modulating the physiological consequences of a given diet. If successful, these studies could significantly advance our long-term goal of developing microbiome-based strategies to treat metabolic disease, with an emphasis on beneficial interactions that might be harnessed to develop the prebiotics and probiotics of the future.
肥胖症及其相关的代谢疾病代表了全球健康危机,影响了我们三分之一以上的成年人。对人类和动物模型的研究表明,非常低碳水化合物的高脂生酮饮食(KDS)可促进体重减轻,提高葡萄糖耐受性并降低胰岛素抵抗和肠炎。虽然所涉及的主要机制被认为是由于肝脏代谢从碳水化合物向脂质的转移所致,但肝外细胞在介导KDS的系统作用中的作用尚不清楚。该RO1应用的目的(PA-19-056)是测试以下假设:饮食诱导的酮体宿主产生的转移有选择地抑制肠道细菌的生长,从而导致免疫细胞激活降低并改善代谢表型。我们广泛的初步结果,以及该领域的科学文献越来越多,为我们的假设的科学前提提供了强有力的支持。这项工作在概念上是创新的,因为它将重点从饮食对肠道菌群的直接影响转移到宿主 - 微生物群相互作用在介导用于治疗人类疾病的常见饮食的影响中的作用。我们认为,这些研究在技术上也是创新的,因为我们将利用宿主和肠道微生物组的配对基因操纵,这是一个在微生物组领域仍然难以捉摸的一般目标。我们将追求以下特定目的:(目标I)使用新的转基因小鼠模型来测试肠酮发生对肠道微生物群的影响; (AIM II)使用自然应变收集和转座子诱变来评估细菌对酮体敏感性的特异性和遗传决定因素; (AIM III)使用常规和gnotobirotic小鼠在饮食诱导的肥胖症中测试与KD相关的细菌免疫激活的作用。该研究计划代表了肠道微生物组领域的当前重点对大量营养素的关注,从而扩大了微生物组研究的范围,以评估宿主 - 微生物组相互作用在调节给定饮食的生理后果中的重要性。如果成功的话,这些研究可能会大大促进我们开发基于微生物组的代谢疾病策略的长期目标,重点是可能利用的有益相互作用来发展未来的益生元和益生菌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter James Turnbaugh其他文献
Peter James Turnbaugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter James Turnbaugh', 18)}}的其他基金
Metabolism of cancer chemotherapeutics by the human gut microbiome
人类肠道微生物组对癌症化疗药物的代谢
- 批准号:
10635361 - 财政年份:2023
- 资助金额:
$ 56.75万 - 项目类别:
Establishing the feasibility of editing the human gut microbiome
建立编辑人类肠道微生物组的可行性
- 批准号:
10621772 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Establishing the feasibility of editing the human gut microbiome
建立编辑人类肠道微生物组的可行性
- 批准号:
10447732 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Host-microbiome interactions shape the metabolic effects of ketogenic diets
宿主-微生物组的相互作用塑造生酮饮食的代谢效应
- 批准号:
10583527 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Establishing the feasibility of editing the human gut microbiome
建立编辑人类肠道微生物组的可行性
- 批准号:
10222578 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Host-microbiome interactions shape the metabolic effects of ketogenic diets
宿主-微生物组的相互作用塑造生酮饮食的代谢效应
- 批准号:
10198908 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
9750971 - 财政年份:2016
- 资助金额:
$ 56.75万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
10477622 - 财政年份:2016
- 资助金额:
$ 56.75万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
10670729 - 财政年份:2016
- 资助金额:
$ 56.75万 - 项目类别:
Predicting and preventing drug metabolism by the human gut microbiome
预测和预防人类肠道微生物组的药物代谢
- 批准号:
10668579 - 财政年份:2016
- 资助金额:
$ 56.75万 - 项目类别:
相似海外基金
Investigating microbiota of the gut-brain axis and the impact of cocaine
研究肠脑轴的微生物群和可卡因的影响
- 批准号:
10625082 - 财政年份:2023
- 资助金额:
$ 56.75万 - 项目类别:
Integrative Multidisciplinary Discovery Platform to Unlock Marine Natural Products Therapeutic Opportunities
综合多学科发现平台释放海洋天然产品治疗机会
- 批准号:
10413304 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Functional consequences of bacterial-fungal dysbiosis in E/VLBW infants
E/VLBW 婴儿细菌-真菌失调的功能后果
- 批准号:
10373520 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Impact of Saccharibacteria and their bacterial hosts in Periodontal and Inflammatory Diseases
糖杆菌及其细菌宿主对牙周病和炎症性疾病的影响
- 批准号:
10541194 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
A machine learning-based screen of marine natural products to identify new leads for the treatment of Acanthamoeba eye infection
基于机器学习的海洋天然产品筛选,以确定治疗棘阿米巴眼部感染的新线索
- 批准号:
10669249 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别: