Developing preclinical human iPSC-based HTS assays to identify therapeutic agents for biliary atresia
开发基于人类 iPSC 的临床前 HTS 检测,以确定胆道闭锁的治疗药物
基本信息
- 批准号:10206130
- 负责人:
- 金额:$ 36.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAutomationBasic ScienceBiliaryBiliary AtresiaBiological AssayBirthBlood specimenCOL1A1 geneCell LineCell modelCell physiologyCellsCharacteristicsChildChildhoodCirrhosisClinicalCollaborationsCollagenDevelopmentDiseaseDisease modelDoseEnsureFDA approvedFibrosisFutureHepatobiliaryHepatotoxicityHumanIn VitroInfantInheritedInstructionLibrariesLifeLiverLiver FibrosisLiver diseasesMedicalMethodsModelingMorbidity - disease rateMusOperative Surgical ProceduresPatientsPerformancePharmaceutical PreparationsPhenotypeProcessRegenerative MedicineReporterReproducibilityResearchResourcesSafetySourceSystemTherapeuticTherapeutic AgentsTissuesTranslatingTriagealpha 1-Antitrypsinalpha 1-Antitrypsin Deficiencybasedesigndisease phenotypefallsfollow-uphigh throughput screeninghuman diseaseinduced pluripotent stem cellinduced pluripotent stem cell technologyliver transplantationminiaturizemortalitymutantnovelnovel therapeuticspalliativepre-clinicalpreventpromininresponsesuccesstherapeutic development
项目摘要
Project Summary
The objective of the research is to develop patient iPSC-based HTS assays that can facilitate
therapeutic discovery for treating biliary atresia (BA) fibrosis. BA is the most common cause of pediatric
end-stage liver disease in the U.S. and is inevitably fatal within the first two years of life if untreated.
Notably, BA is the most rapidly fibrosing liver disease in humans and is associated with significant
morbidity and mortality in children. Compared to other liver diseases that gradually progress into
cirrhosis over decades, BA infants characteristically develop fibrosis/cirrhosis within weeks to months
after birth. Although there is a palliative surgical procedure, there is no known treatment to halt the
progressive fibrosis; most infants born with the disease will need liver transplantation in order to
survive. A main challenge in developing effective anti-fibrotic drugs has been the lack of a model of the
human disease.
The human induced pluripotent stem cell (iPSC) technology provides an alternative for generating
functional, renewable and relevant cell sources for disease modeling using patient tissues. Based on
our expertise on in vitro disease modeling, we have recently succeeded in developing BA patient-
specific iPSCs and have demonstrated that these cells produce significantly more collagen and other
fibrosis markers along with deficiency in biliary differentiation (key disease features of BA), compared to
the iPSCs of healthy children. This new line of research on BA patient iPSCs makes it feasible to
evaluate both efficacy and safety of potential drugs in a more human-relevant setting. Thus we believe
this human cellular model of BA can serve as an ideal system to identify effective anti-fibrotic
compounds in treating liver fibrosis in BA.
In the current study, we propose to: 1) Develop a novel high throughput assay to assess anti-fibrotic
effects of compounds on BA fibrosis using COL1A1 reporter BA-iPSC lines. We will determine the
conditions for miniaturizing the assay and for robust assay automation. 2) Perform pilot screens to
validate and optimize the assay using a clinical drug library in order to ensure automation reliability and
assay reproducibility. 3) Develop independent secondary assays to prioritize hit selection by further
verifying the anti-fibrotic effects of the hits and evaluating their protective/adverse effects on
hepatobiliary tissues derived from patient iPSCs. At the conclusion of this study, we will have
developed a robust, patient cell-based HTS assay capable of identifying new disease targets and leads
for developing novel therapies for BA patients. Moreover, success of this project will be a step forward
in translating basic iPSC discoveries to therapeutic applications, helping to fulfill their promise in
developing regenerative medicine.
项目概要
该研究的目的是开发基于患者 iPSC 的 HTS 检测方法,以促进
治疗胆道闭锁(BA)纤维化的治疗发现。 BA是儿科最常见的病因
在美国,这是一种终末期肝病,如果不及时治疗,在出生后的头两年内不可避免地会致命。
值得注意的是,BA 是人类纤维化速度最快的肝病,与显着的相关性相关。
儿童发病率和死亡率。与其他逐渐进展的肝脏疾病相比
肝硬化持续数十年,BA 婴儿通常会在数周至数月内出现纤维化/肝硬化
出生后。尽管有姑息性外科手术,但尚无已知的治疗方法可以阻止这种情况的发生。
进行性纤维化;大多数出生时患有这种疾病的婴儿需要肝移植才能
存活。开发有效的抗纤维化药物的一个主要挑战是缺乏模型
人类疾病。
人类诱导多能干细胞(iPSC)技术为生成
使用患者组织进行疾病建模的功能性、可再生和相关细胞来源。基于
我们在体外疾病模型方面的专业知识,我们最近成功开发了 BA 患者-
特定的 iPSC,并已证明这些细胞产生明显更多的胶原蛋白和其他
与胆道分化缺陷(BA 的关键疾病特征)相比,纤维化标志物
健康儿童的 iPSC。这项针对 BA 患者 iPSC 的新研究使
在更与人类相关的环境中评估潜在药物的功效和安全性。因此我们相信
这种 BA 人类细胞模型可以作为识别有效抗纤维化药物的理想系统
治疗 BA 肝纤维化的化合物。
在当前的研究中,我们建议:1)开发一种新颖的高通量测定法来评估抗纤维化作用
使用 COL1A1 报告基因 BA-iPSC 系研究化合物对 BA 纤维化的影响。我们将确定
小型化测定和强大的测定自动化的条件。 2) 执行试点屏幕
使用临床药物库验证和优化测定,以确保自动化可靠性和
测定的重现性。 3) 开发独立的二级检测,通过进一步确定命中选择的优先级
验证命中的抗纤维化作用并评估其对健康的保护/不利影响
来自患者 iPSC 的肝胆组织。在本研究结束时,我们将得到
开发了一种强大的、基于患者细胞的 HTS 检测,能够识别新的疾病靶点和线索
为 BA 患者开发新疗法。此外,该项目的成功将向前迈出一步
将 iPSC 的基本发现转化为治疗应用,帮助实现他们的承诺
发展再生医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoon Young Jang其他文献
Yoon Young Jang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoon Young Jang', 18)}}的其他基金
Developing preclinical human iPSC-based HTS assays to identify therapeutic agents for biliary atresia
开发基于人类 iPSC 的临床前 HTS 检测,以确定胆道闭锁的治疗药物
- 批准号:
10434734 - 财政年份:2020
- 资助金额:
$ 36.84万 - 项目类别:
Ultraminiaturized microfluidics-based drug toxicity screening platform using iPSC
使用 iPSC 的超小型基于微流体的药物毒性筛选平台
- 批准号:
8619264 - 财政年份:2013
- 资助金额:
$ 36.84万 - 项目类别:
DISEASE MODELING OF ALCOHOL RELATED HEPATOCELLULAR CARCINOMA USING PATIENT IPSCS
使用患者 IPSCS 对酒精相关肝细胞癌进行疾病建模
- 批准号:
8030259 - 财政年份:2011
- 资助金额:
$ 36.84万 - 项目类别:
DISEASE MODELING OF ALCOHOL RELATED HEPATOCELLULAR CARCINOMA USING PATIENT IPSCS
使用患者 IPSCS 对酒精相关肝细胞癌进行疾病建模
- 批准号:
8209222 - 财政年份:2011
- 资助金额:
$ 36.84万 - 项目类别:
相似国自然基金
热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
- 批准号:52306006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
工业自动化与创新的产业外溢:理论与实证
- 批准号:72302245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向典型sponge类哈希函数的比特分析驱动的中间相遇自动化攻击研究
- 批准号:62302250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
- 批准号:32301266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
码头自动化中的图论和组合优化问题
- 批准号:12331014
- 批准年份:2023
- 资助金额:194 万元
- 项目类别:重点项目
相似海外基金
Developing preclinical human iPSC-based HTS assays to identify therapeutic agents for biliary atresia
开发基于人类 iPSC 的临床前 HTS 检测,以确定胆道闭锁的治疗药物
- 批准号:
10434734 - 财政年份:2020
- 资助金额:
$ 36.84万 - 项目类别:
Automated Touchscreen-Piezo Monitoring of Mouse Cognition, Activity and Sleep
自动触摸屏压电监测鼠标认知、活动和睡眠
- 批准号:
7272644 - 财政年份:2007
- 资助金额:
$ 36.84万 - 项目类别:
Automated Touchscreen-Piezo Monitoring of Mouse Cognition, Activity and Sleep
自动触摸屏压电监测鼠标认知、活动和睡眠
- 批准号:
7434026 - 财政年份:2007
- 资助金额:
$ 36.84万 - 项目类别: