Pathogenesis of Airway Stem Cell Abnormalities in Obliterative Bronchiolitis
闭塞性细支气管炎气道干细胞异常的发病机制
基本信息
- 批准号:10372103
- 负责人:
- 金额:$ 58.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbnormal CellAddressAllograftingAnimal ModelAutologousBasal CellBiological AssayBronchiolitisCaringCause of DeathCell LineageCell TherapyCell surfaceCellsClinicalDataDenervationDevelopmentDisease ProgressionDistalEnterobacteria phage P1 Cre recombinaseEpithelialFerretsFibrosisFoundationsGenesGlandGoalsHumanImmune TargetingImmune mediated destructionImpairmentIn VitroInjectionsInjuryInvestigationKnock-outKnowledgeLeadLeftLobarLobeLocationLungLung TransplantationLung diseasesMaintenanceMammalsModelingMorbidity - disease rateMusMyoepithelialMyoepithelial cellOrganoidsOutcomePathogenesisPathologyPathway interactionsPatientsPhenotypePlayPropertyPublishingRattusRegenerative capacityRegulationReporterResearchReserve Stem CellRoleSeveritiesSignal TransductionStem Cell DevelopmentStem cell transplantStructureSurfaceTestingTherapeuticTimeTracheaTransgenesTransgenic OrganismsTransplant RecipientsTransplantationWNT Signaling PathwayXenograft procedureairway epitheliumcartilaginouseditorialeffective therapyepithelial stem cellepithelium regenerationexhaustionhuman modelimplantationin vivoinjury and repairlung allograftlung regenerationmortalitynovelnovel therapeuticsoverexpressionpre-clinicalpreventpublic health relevanceregeneration following injuryrepairedself-renewalstem cell nichestem cell therapystem cellstranscription factortransplant model
项目摘要
Project Summary:
End-stage lung diseases are a major cause of morbidity and mortality worldwide. Lung transplantation is an
excellent treatment option for patients with this condition, yet 50% of recipients die within five years due to the
development of obliterative bronchiolitis (OB) in the allograft. Epithelial stem cell depletion is suggested to
contribute to the development of OB; however, there is little research being performed to test this hypothesis,
primarily due to the lack of animal models for OB that develop allograft pathology resembling that seen in
humans. We recently developed a novel orthotopic lung transplant model in the ferret that models human OB
very well. Using this model, we have shown for the first time in ferret and human allografts that the number of
clonogenic K5+p63+ basal stem cells (BSCs) progressively declines in proximal and distal airways of the allograft
as the severity of OB increases. Additionally, our research is the first to demonstrate that the proximal airway
submucosal gland (SMG), a facultative niche for BSCs in the surface airway epithelium (SAE), is an early target
of immune destruction in human and ferret allograft airways. In mice, the SMG stem cell niche serves only the
trachea; however, in larger mammals such as humans and ferrets, SMGs are present throughout the
cartilaginous airways. Using lineage tracing, we have shown that the myoepithelial cells (MECs) of SMGs are
precursors of multipotent K5+p63+ BSCs in the SAE. During the development of OB, the destruction of SMG
stem cell niches in the allograft occurs simultaneously with phenotypic and functional changes to multipotent
K5+p63+ BSCs in the SAE. We hypothesize that destruction of the denervated SMG in the allograft, and thus
depletion of MECs, leads to a decline in multipotent K5+p63+ BSCs in the SAE, and to increases in committed
multipotent (K5+p63+K14+), bipotent (K5+K14+, p63+K14+) and unipotent (K14+) basal cells, all of which have a
reduced capacity for self-renewal. The objective of the proposed research is to determine the functional
significance of the phenotypic changes in the MECS and the lineage-committed basal cells and how denervation
of the SMG alters Wnt signaling (Lef-1/TCF1) required for both the maintenance of the SMG stem cell niche and
lineage commitment of glandular MECs to SAE BSCs in the setting of injury. Additionally, a major preclinical
objective of this proposal is to elucidate the ability of stem cells to engraft into a transplanted lung and repair
injury, thus laying the foundation for the development of stem cell therapy to delay or prevent OB in lung
allografts. We will achieve these objectives by addressing the following specific aims: 1) Determine how
destruction of the SMG stem cell niche contributes to depletion of K5+p63+ BSCs. 2) Identify consequences of
lung denervation on airway stem cells and their niches. 3) Determine the potential for airway stem cell
transplantation in preventing or delaying OB. We expect that delineating the mechanisms of stem cell depletion
in the airways of transplanted lungs will be a major step forward in understanding OB pathogenesis and will
inform the use of stem cells as a therapeutic approach to prevent or delay OB.
项目概要:
终末期肺部疾病是全世界发病和死亡的主要原因。肺移植是一种
对于患有这种疾病的患者来说是一个很好的治疗选择,但 50% 的接受者会在五年内死亡。
同种异体移植物中发生闭塞性细支气管炎(OB)。建议去除上皮干细胞
为OB的发展做出贡献;然而,很少有研究来检验这一假设,
主要是由于缺乏 OB 动物模型来发展类似于 OB 的同种异体移植病理学。
人类。我们最近在雪貂身上开发了一种新型原位肺移植模型,用于模拟人类 OB
很好。使用这个模型,我们首次在雪貂和人类同种异体移植物中表明,
同种异体移植物近端和远端气道中克隆形成的 K5+p63+ 基底干细胞 (BSC) 逐渐减少
随着 OB 严重程度的增加。此外,我们的研究首次证明近端气道
粘膜下腺 (SMG) 是气道表面上皮 (SAE) 中 BSC 的兼性生态位,是早期靶点
人类和雪貂同种异体移植气道中的免疫破坏。在小鼠中,SMG 干细胞生态位仅服务于
气管;然而,在人类和雪貂等大型哺乳动物中,SMG 存在于整个身体中。
软骨气道。通过谱系追踪,我们发现 SMG 的肌上皮细胞 (MEC)
SAE 中多能 K5+p63+ BSC 的前体。 OB开发过程中,SMG被破坏
同种异体移植物中的干细胞生态位与多能的表型和功能变化同时发生
SAE 中的 K5+p63+ BSC。我们假设同种异体移植物中去神经的 SMG 被破坏,因此
MEC 的耗尽,导致 SAE 中多能 K5+p63+ BSC 的减少,并导致承诺的增加
多能 (K5+p63+K14+)、双能 (K5+K14+、p63+K14+) 和单能 (K14+) 基底细胞,所有这些细胞都具有
自我更新能力下降。拟议研究的目的是确定功能
MECS 和谱系定型基底细胞表型变化的重要性以及去神经如何
SMG 的改变改变了维持 SMG 干细胞生态位和维持 SMG 干细胞生态位所需的 Wnt 信号传导 (Lef-1/TCF1)
损伤情况下腺 MEC 对 SAE BSC 的谱系承诺。此外,一项重要的临床前研究
该提案的目的是阐明干细胞植入移植肺并修复的能力
损伤,从而为干细胞治疗延缓或预防肺OB的发展奠定了基础
同种异体移植物。我们将通过解决以下具体目标来实现这些目标: 1) 确定如何
SMG 干细胞生态位的破坏导致 K5+p63+ BSC 的消耗。 2) 确定后果
气道干细胞及其生态位的肺去神经支配。 3) 确定气道干细胞的潜力
移植可预防或延缓 OB。我们期望描述干细胞耗竭的机制
在移植肺的气道中进行检测将是了解 OB 发病机制的重要一步,并将
告知使用干细胞作为预防或延迟 OB 的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kalpaj Rajnikant Parekh其他文献
Kalpaj Rajnikant Parekh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kalpaj Rajnikant Parekh', 18)}}的其他基金
Pathogenesis of Airway Stem Cell Abnormalities in Obliterative Bronchiolitis
闭塞性细支气管炎气道干细胞异常的发病机制
- 批准号:
9900856 - 财政年份:2019
- 资助金额:
$ 58.96万 - 项目类别:
Pathogenesis of Airway Stem Cell Abnormalities in Obliterative Bronchiolitis
闭塞性细支气管炎气道干细胞异常的发病机制
- 批准号:
10586086 - 财政年份:2019
- 资助金额:
$ 58.96万 - 项目类别:
相似国自然基金
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
AhR通过泛素化降解Rev-erb-α/β引起肾小管上皮细胞脂质合成异常促进肾脏纤维化的机制研究
- 批准号:82300834
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
角质形成细胞中TLR7介导的NF-κB异常活化在玫瑰痤疮发病中的作用及机制研究
- 批准号:82373508
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
β-巨噬细胞环路障碍导致胰岛素分泌异常中GPCR所介导的信号机制研究
- 批准号:82330022
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
支持细胞Mettl16功能异常在睾丸发育障碍中的作用与机制研究
- 批准号:82371606
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 58.96万 - 项目类别:
Placental Organoids for Modeling and Treating Preeclampsia
用于建模和治疗先兆子痫的胎盘类器官
- 批准号:
10464766 - 财政年份:2022
- 资助金额:
$ 58.96万 - 项目类别:
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10610461 - 财政年份:2021
- 资助金额:
$ 58.96万 - 项目类别: