Analysis of Nematode Sex Determination and Dosage Compensation
线虫性别决定和剂量补偿分析
基本信息
- 批准号:10371895
- 负责人:
- 金额:$ 46.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAffinityArchitectureBacteriaBindingCaenorhabditisCaenorhabditis elegansCellsChromosome StructuresChromosome TerritoryChromosomesComplexDevelopmentDosage Compensation (Genetics)FemaleGene ExpressionGene Expression RegulationGrowthHermaphroditismHigher Order Chromatin StructureHistonesKnowledgeLinkMachine LearningMammalsMediatingMeiosisMetabolismMethodsMitoticMolecularNatureNematodaRNA Polymerase IIRegulatory ElementResolutionSignal TransductionSiteStructureSwitch GenesWorkX ChromosomeX Inactivationautosomechromatin modificationcondensindosagehistone demethylasemalemanneural networkprotein complexrecruitsexsex determinationsingle moleculetumor progression
项目摘要
PROJECT SUMMARY
Studies are proposed to dissect one of the fundamental, binary development decisions that most
metazoans make: their sex. The nematode C. elegans determines sex with remarkable precision by tallying X-
chromosome number relative to the sets of autosomes (X:A signal): ratios of 1X:2A (0.5) and 2X:3A (0.67)
signal male fate, while ratios of 3X:4A (0.75) and 2X:2A (1.0) signal hermaphrodite fate. We have discovered
much about the nature and action of the X:A signal and its direct target, a master sex-determination-switch gene
that also controls X-chromosome dosage compensation. However, a fundamental question remains: how is the
signal interpreted reproducibly in an "all or none" manner to elicit fertile male or hermaphrodite development, never
intersexual development? We pioneer new methods using machine learning neural networks to address this
question with single-molecule and single-cell resolution. We also propose to dissect the functional interplay
between chromatin modification and chromosome structure in regulating gene expression over vast
chromosomal territories. X-chromosome dosage compensation in C. elegans is exemplary for this analysis: we
found recently that dosage-compensated X chromosomes have (i) elevated levels of modified histone
H4K20me1 compared to autosomes and (ii) a unique three-dimensional architecture. Both are imposed by the
dosage compensation complex (DCC). Loss of H4K20me1 disrupts 3D architecture and elevates X gene
expression. In the nematode DCC, one subunit is an H4K20me2 demethylase and five subunits are homologs
of condensin subunits, which compact and resolve mitotic and meiotic chromosomes. All DCC subunits are
recruited specifically to hermaphrodite X chromosomes by an XX-specific subunit that triggers binding to cis-
acting regulatory elements on X (rex) to reduce gene expression by half. The DCC remodels the structure of X
into topologically associating domains (TADs) using its highest affinity rex sites to establish domain boundaries.
Despite this knowledge, important questions underlying the mechanisms of dosage compensation remain.
What DCC subunits recognize the X-enriched motifs in rex sites to bind X directly? How does the DCC regulate
RNA polymerase II to repress gene expression? What mechanisms underlie H4K20me1's control of
chromosome structure, and how does DCC-mediated higher-order structure affect gene expression? Our
findings should have broad implications, because (i) condensin complexes control chromosome structure from
bacteria to man, (ii) H4K20me1 is enriched on the inactive X of female mammals, (iii) demethylases are linked to
tumor progression, and (iv) the H4K20me2 demethylase modulates nematode growth, metabolism, and entry into
the quiescent dauer state. Lastly, we will exploit our unexpected finding that rex sites have diverged across
Caenorhabditis species separated by 30 MYR, retaining no functional overlap despite strong conservation of the
core DCC machinery. This divergence provides an unusual opportunity to study the path for a concerted co-
evolutionary change in hundreds of target sites across X chromosomes and the protein complexes that bind them.
项目概要
拟议的研究旨在剖析大多数人所采取的基本的二元发展决策之一。
后生动物制造:它们的性别。线虫 C. elegans 通过计算 X- 来极其精确地确定性别
相对于常染色体组的染色体数目(X:A 信号):1X:2A (0.5) 和 2X:3A (0.67) 的比率
信号男性命运,而 3X:4A (0.75) 和 2X:2A (1.0) 的比率则信号雌雄同体命运。我们发现
关于 X:A 信号及其直接目标(主要性别决定开关基因)的性质和作用的更多信息
它还控制 X 染色体剂量补偿。然而,一个根本问题依然存在:如何
以“全部或全部”的方式重复解释信号以引发可育的雄性或雌雄同体发育,从不
两性发育?我们开创了使用机器学习神经网络的新方法来解决这个问题
单分子和单细胞分辨率的问题。我们还建议剖析功能相互作用
染色质修饰和染色体结构之间在调节基因表达方面的作用
染色体区域。线虫中的 X 染色体剂量补偿是本分析的典范:我们
最近发现,剂量补偿的 X 染色体 (i) 修饰组蛋白水平升高
H4K20me1 与常染色体相比以及 (ii) 独特的三维架构。两者均由
剂量补偿复合物(DCC)。 H4K20me1 缺失会破坏 3D 架构并提升 X 基因
表达。在线虫 DCC 中,一个亚基是 H4K20me2 去甲基酶,五个亚基是同系物
凝缩蛋白亚基,压缩并分解有丝分裂和减数分裂染色体。所有 DCC 亚基均为
由 XX 特异性亚基特异性招募到雌雄同体 X 染色体,触发与顺式结合
作用于 X (rex) 的调控元件可将基因表达量减少一半。 DCC重塑X的结构
使用其最高亲和力的雷克斯位点进入拓扑关联域(TAD)来建立域边界。
尽管有了这些知识,剂量补偿机制背后的重要问题仍然存在。
哪些 DCC 亚基可识别 rex 位点中富含 X 的基序以直接结合 X? DCC如何监管
RNA聚合酶II抑制基因表达? H4K20me1 控制的机制是什么
染色体结构,以及 DCC 介导的高阶结构如何影响基因表达?我们的
研究结果应该具有广泛的意义,因为(i)凝缩蛋白复合物控制染色体结构
细菌对人类的影响,(ii) H4K20me1 在雌性哺乳动物的非活性 X 上富集,(iii) 去甲基酶与
肿瘤进展,以及 (iv) H4K20me2 去甲基酶调节线虫生长、代谢和进入
静止的多尔状态。最后,我们将利用我们的意外发现,即霸王龙的站点已经分散
Caenorhabditis 物种相距 30 MYR,尽管对物种进行了强有力的保护,但没有保留功能重叠
核心DCC机械。这种分歧提供了一个不寻常的机会来研究协调一致的合作之路
X 染色体上数百个目标位点以及结合它们的蛋白质复合物的进化变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARBARA J MEYER其他文献
BARBARA J MEYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARBARA J MEYER', 18)}}的其他基金
Analysis of Nematode Sex Determination and Dosage Compensation
线虫性别决定和剂量补偿分析
- 批准号:
9898392 - 财政年份:2019
- 资助金额:
$ 46.63万 - 项目类别:
Analysis of Nematode Sex Determination and Dosage Compensation
线虫性别决定和剂量补偿分析
- 批准号:
10598121 - 财政年份:2019
- 资助金额:
$ 46.63万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 46.63万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 46.63万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 46.63万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 46.63万 - 项目类别: