Development of a novel acoustofluidic device for targeted antibody removal in pediatric organ transplant rejection
开发一种新型声流控装置,用于去除儿科器官移植排斥反应中的靶向抗体
基本信息
- 批准号:10372229
- 负责人:
- 金额:$ 24.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressAdultAllograftingAnimalsAntibodiesAntibody FormationAntibody TherapyAntigensAutoimmune DiseasesBiomedical EngineeringBloodBlood CellsBlood CirculationBlood Coagulation FactorBlood Component RemovalBlood PlateletsBlood TransfusionBlood VolumeBlood specimenCell SeparationCellsCellular StructuresCessation of lifeChildChildhoodCouplingDevelopmentDevicesDiseaseDoseEngineeringErythrocytesExcisionFailureFamily suidaeFutureGoalsGraft RejectionHLA AntigensHeart TransplantationHematologyHemorrhageHumanHypersensitivityHypotensionImmunityImmunologyIn VitroInfantInfectionInterdisciplinary StudyIsoantibodiesLeukocytesLifeLiquid substanceLongevityMediatingMethodsModelingMorbidity - disease rateMusNephrologyOrganOrgan TransplantationOrgan failurePatientsPharmaceutical PreparationsPhysiologicalPolystyrenesPositioning AttributePre-Clinical ModelPregnancyProcessProductionRattusRodentRodent ModelSafetySavingsSolidSpecificitySystemTechnologyTestingTimeTransfusionTranslatingTransplant RecipientsTransplant-Related DisorderTransplantationTreatment EfficacyUnited StatesWhole Bloodantibody-mediated rejectionbasecombatdesigndonor-specific antibodyeffective therapyfightinghemodynamicshigh riskin vivoin vivo Modelinnovationinstrumentmortalitynovelorgan transplant rejectionporcine modelpost-transplantpre-clinicalpreservationprototypesafety testingsoundtransplant model
项目摘要
ABSTRACT
Antibody-mediated diseases, including those associated with solid organ transplantation, are one of the top ten
causes of pediatric death. Over 50% of transplanted organs are lost by 10 years post-transplantation from
antibody-mediated rejection, which contributes significantly to the current organ shortage. The development of
antibodies to the transplanted organ occurs for various reasons including multiple blood transfusions, under
dosing of anti-rejection medications, previous transplants or pregnancy. These antibodies damage the
transplanted organ resulting in allograft failure and increased patient mortality. To overcome this limitation, using
a multi-disciplinary collaboration between transplant nephrology, biomedical engineering, immunology, and
hematology, we have developed an innovative approach for targeted antibody removal. Current therapies for
antibody-mediated rejection are not donor specific nor are they tailored toward children. Apheresis, one of the
standard therapies for antibody-mediated rejection, involves a machine for antibody removal that has been
developed for adults. The use of the current devices in children, however, is associated with multiple morbidities
including hypotension and the need for blood transfusions to maintain hemodynamic stability, which in turn
stimulates more antibody production. Additionally, infants are often ineligible for apheresis due to their small
size. Apheresis is also limited by non-specific antibody removal and significant antibody rebound. Lack of a
scalable apheresis machine precludes not only treatment of children with small blood volumes, but also limits
development of suitable pre-clinical models for testing safety and therapeutic efficacy. In prior studies, we show
that an acoustofluidic apheresis device is capable of using sound waves to efficiently separate antibody from
other cellular components such as red blood cells, white cells and platelets in small extracorporeal volumes (<20
mL) of whole blood and in sensitized rodent models. We have successfully developed antigen-specific beads to
capture donor antibodies in rodents. Our central hypothesis is that the innovative addition of trapping technology
will lead to more effective treatment of antibody-mediated rejection than current approaches by removing donor-
specific antibody more efficiently, preserving endogenous immunity and reducing antibody rebound. To achieve
this end, we will develop an antibody trapping method within an acoustofluidic device using piglet blood samples
with high levels of antibody. In parallel, we will examine an in vivo piglet sensitization model, where antibody
levels to donor antigens are extremely elevated. Our overall goal is to develop an acoustofluidic apheresis device
that removes the detrimental antibody specific to the transplanted organ and leaves behind beneficial antibodies
that fight infection. The ability to effectively treat antibody-mediated rejection will decrease pediatric mortality,
increase the life span of transplanted organs, and help alleviate organ shortages. The application of this novel
device will be paradigm shifting and directly translatable to children with solid organ transplantation, as well as
autoimmune disease, thus saving the lives of numerous children.
抽象的
抗体介导的疾病,包括与实体器官移植相关的疾病,是十大疾病之一
儿童死亡的原因。超过50%的移植器官在移植后10年内丢失
抗体介导的排斥反应,这在很大程度上导致了当前的器官短缺。的发展
移植器官产生抗体的原因有多种,包括多次输血、
抗排斥药物的剂量、先前的移植或怀孕。这些抗体会破坏
移植器官导致同种异体移植失败并增加患者死亡率。为了克服这个限制,使用
移植肾病学、生物医学工程、免疫学和
在血液学方面,我们开发了一种用于靶向抗体去除的创新方法。目前的治疗方法
抗体介导的排斥反应不是供体特异性的,也不是针对儿童的。血浆分离术,其中之一
抗体介导的排斥反应的标准疗法涉及一台用于去除抗体的机器,该机器已被
专为成人开发。然而,儿童使用现有设备会导致多种疾病
包括低血压和需要输血以维持血流动力学稳定,这反过来又
刺激更多抗体产生。此外,婴儿由于体型较小,通常不适合进行血浆分离术。
尺寸。单采术还受到非特异性抗体去除和显着抗体反弹的限制。缺乏一个
可扩展的单采机不仅妨碍了对血量较少的儿童的治疗,而且限制了
开发合适的临床前模型来测试安全性和治疗效果。在之前的研究中,我们表明
声流控单采装置能够利用声波有效地将抗体与
其他细胞成分,例如小体外体积中的红细胞、白细胞和血小板(<20
mL)全血和致敏啮齿动物模型。我们已成功开发出抗原特异性珠子
捕获啮齿动物中的供体抗体。我们的中心假设是捕获技术的创新添加
通过去除供体,将比目前的方法更有效地治疗抗体介导的排斥反应
更有效地产生特异性抗体,保留内源性免疫,减少抗体反弹。达到
为此,我们将使用仔猪血液样本在声流控装置内开发一种抗体捕获方法
具有高水平的抗体。与此同时,我们将检查体内仔猪致敏模型,其中抗体
供体抗原的水平极高。我们的总体目标是开发声流控单采装置
去除移植器官特有的有害抗体并留下有益抗体
对抗感染。有效治疗抗体介导的排斥反应的能力将降低儿科死亡率,
延长移植器官的寿命,有助于缓解器官短缺。这部小说的应用
该设备将实现范式转变,并可直接应用于接受实体器官移植的儿童以及
自身免疫性疾病,从而挽救了无数儿童的生命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eileen Tsai Chambers其他文献
Eileen Tsai Chambers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eileen Tsai Chambers', 18)}}的其他基金
Development of a novel acoustofluidic device for targeted antibody removal in pediatric organ transplant rejection
开发一种新型声流控装置,用于去除儿科器官移植排斥反应中的靶向抗体
- 批准号:
10216827 - 财政年份:2021
- 资助金额:
$ 24.15万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Vital capacity & airflow measurement for voice evaluation: A vortex whistle system
肺活量
- 批准号:
10737248 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Characterizing the generative mechanisms underlying the cortical tracking of natural speech
表征自然语音皮质跟踪背后的生成机制
- 批准号:
10710717 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别: