Center for Neural Circuits in Addiction
成瘾神经回路中心
基本信息
- 批准号:10200729
- 负责人:
- 金额:$ 194.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAnatomyAnimalsBehaviorBiologicalBiomedical TechnologyBrainBrain DiseasesBrain regionCatalysisChronicCognitionCollaborationsCommunitiesComplementConsumptionCustomDataData AnalysesData CollectionDevelopmentDisciplineDrug AddictionEconomicsExhibitsExposure toFiberFluorescenceFunctional disorderFundingFutureGoalsHeadHealthImageIndividualInformaticsInformation DisseminationInstitutesInstitutionInterruptionKnowledgeLabelLeadershipMapsMeasuresMicroscopeMindMinnesotaMissionModalityMolecularMonitorNational Institute of Drug AbuseNeuronsNeurosciencesNeurosciences ResearchPatternPharmaceutical PreparationsPhotometryPilot ProjectsPositioning AttributePreventionProcessReagentRelapseResearchResearch PersonnelResearch SupportResourcesSerotypingSignal TransductionSpecific qualifier valueSpeedStructureSubstance Use DisorderTechniquesTechnologyTestingTraining and EducationUnited States National Institutes of HealthUniversitiesViralVirusWorkaddictionbasebiomarker identificationcellular imagingcomputational platformconnectomecostcravingdesigneffective therapyimaging modalityinnovationinnovative technologiesinterestmental functionmultimodalityneural circuitnew technologynovelnovel therapeuticsoptical imagingpromoterrelating to nervous systemtoolvector
项目摘要
PROJECT SUMMARY: Overall
Addiction is a chronic relapsing brain disorder resulting from perturbations in neural circuits. Delineating these
circuit perturbations should provide a host of opportunities to develop new therapies for addiction prevention and
treatment. New technologies in neuroscience are revolutionizing our ability to measure and intervene in specified
neural circuits. To take advantage, these technologies should be broadly distributed. We propose to create a
NIDA Center for Neural Circuits in Addiction at the University of Minnesota (UMN) to further develop and
disseminate these new techniques to produce groundbreaking work in addiction neuroscience. Based on our
collective expertise, our strong base of collaborative addiction research and the support provided by our
institution, our group at the UMN is in an excellent position to form this Center. It would comprise four new
Research Cores: 1) The Viral Innovation Core (VIC) will assist investigators in applying state-of-the-art viral
manipulation approaches to their studies of the anatomical, molecular and neural circuit bases of addiction. This
Core will provide expertise for design of custom vectors, including guidance on combinations of AAV serotype,
promoters, and fluorescent tags; 2) The Structural Circuits Core (SCC) will offer state-of-the-art anatomical
mapping of neural circuits involved in addiction. Integrated with the University Imaging Center and UMN
Informatics Institute, SCC will provide automated use of brain clearing technology paired with meso- and micro-
scale imaging of the CNS; 3) The Imaging Cells during Behavior Core (ICBC) will offer a range of imaging
modalities to monitor brain activity in behaving animals across a range of spatial and temporal scales. These
modalities include fiber photometry, head-mounted miniature microscopes (“miniscopes”) and novel wide field-
of-view optical imaging during behavior at both the mesoscopic and cellular levels. 4) The Addiction
Connectome Core (ACC) will create a computational platform to integrate multimodal functional and structural
data to test relationships between exposure to addictive drugs and neural connectivity. Availability of this platform
should enable outside scholars from anywhere in the world to delineate drug-modified connectivity patterns and
addiction-relevant biological variables, facilitating the identification of biomarkers for mental function and
dysfunction. Our Center would provide to the research community: a) Education and training in new technologies;
b) Access to tools, reagents and expertise for data collection and analysis; c) Further development and adoption
of new technologies; d) Catalysis of new collaborations among users; and e) Dissemination of resulting research
and new technologies to the wider addiction research community. The Pilot Project Core will facilitate use of the
Cores for innovative pilot studies and push the envelope in neural circuit research. Under the Center Director’s
leadership, the Administrative Core, with a panel of expert scientific advisors, would coordinate and support the
efforts of the individual Cores. Our goal is for the Center to be a national resource for neural circuit research
technologies that fuels high-impact, collaborative research to address critical knowledge gaps in our field.
项目概要:总体
成瘾是一种由神经回路紊乱引起的慢性复发性脑部疾病。
电路扰动应该提供大量机会来开发新的疗法来预防成瘾和
神经科学的新技术正在彻底改变我们测量和干预特定疾病的能力。
为了利用这些技术,我们建议创建一个神经回路。
NIDA 明尼苏达大学 (UMN) 成瘾神经回路中心进一步开发和
传播这些新技术,以在成瘾神经科学领域产生突破性的工作。
集体的专业知识,我们强大的协作成瘾研究基础以及我们的支持
机构,我们 UMN 的团队处于组建该中心的绝佳位置,它将由四个新的成员组成。
研究核心:1)病毒创新核心(VIC)将协助研究人员应用最先进的病毒
他们对成瘾的解剖学、分子和神经回路基础的研究采用了操纵方法。
Core 将提供定制载体设计的专业知识,包括 AAV 血清型组合的指导,
启动子和荧光标签;2) 结构电路核心 (SCC) 将提供最先进的解剖学
与大学成像中心和 UMN 整合的神经回路图谱。
SCC 信息学研究所将提供与中观和微观相结合的大脑清理技术的自动化使用
中枢神经系统的规模成像;3) 行为核心 (ICBC) 期间的成像细胞将提供一系列成像
在一系列空间和时间尺度上监测行为动物的大脑活动的方式。
模式包括光纤光度测定、头戴式微型显微镜(“微型显微镜”)和新颖的宽视场
介观和细胞水平行为过程中的视野外光学成像 4) 成瘾。
Connectome Core(ACC)将创建一个计算平台来集成多模式功能和结构
数据来测试成瘾药物暴露与神经连接之间的关系。
应该使来自世界任何地方的外部学者能够描绘药物修饰的连接模式,
与成瘾相关的生物变量,有助于识别心理功能的生物标志物和
我们的中心将为研究界提供: a) 新技术的教育和培训;
b) 获得数据收集和分析的工具、试剂和专业知识 c) 进一步开发和采用;
新技术的推广; d) 促进用户之间的新合作;以及 e) 成果研究的传播;
试点项目核心将促进更广泛的成瘾研究社区的新技术的使用。
在中心主任的领导下,创新试点研究的核心和突破神经回路研究的极限。
在领导层、行政核心以及专家科学顾问小组的领导下,将协调和支持
我们的努力目标是使该中心成为神经回路研究的国家资源。
推动高影响力的协作研究的技术,以解决我们领域的关键知识差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark John Thomas其他文献
Mark John Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark John Thomas', 18)}}的其他基金
Reversal of Opioid-Induced Pathological Neuroplasticity Through Timed Electrical Stimulation
通过定时电刺激逆转阿片类药物引起的病理性神经可塑性
- 批准号:
10359133 - 财政年份:2021
- 资助金额:
$ 194.41万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
- 批准号:
10822023 - 财政年份:2023
- 资助金额:
$ 194.41万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 194.41万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 194.41万 - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 194.41万 - 项目类别:
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 194.41万 - 项目类别: