Molecular Mechanisms of Purkinje Cell Degeneration in Ataxia-Telangiectasia
共济失调毛细血管扩张症浦肯野细胞变性的分子机制
基本信息
- 批准号:10193587
- 负责人:
- 金额:$ 46.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:ATM Gene MutationATM Signaling PathwayATM geneAffectAtaxia TelangiectasiaAtaxia Telangiectasia PatientsBiological AssayBiological ModelsBirthCRISPR/Cas technologyCalciumCell DeathCell SurvivalCellsCellular AssayCerebellar degenerationCerebellumCessation of lifeChronicCoculture TechniquesControl GroupsDNA DamageDataData SetDefectDevelopmentDiseaseEtiologyFamily memberFibroblastsFire - disastersFunctional disorderGene ExpressionGene ProteinsGenesGenetic DiseasesHumanImageImmunologic Deficiency SyndromesInfectionLifeLive BirthLymphocyteMalignant NeoplasmsMessenger RNAMethodsMitochondriaModelingMolecularMorphologyMusMutationNerve DegenerationNeurologicNeuronsOutputOxidative StressPathway interactionsPatientsPhenotypePhosphorylationPredispositionProteinsProteomicsProtocols documentationPublishingPurkinje CellsResearchRoleSpecificitySystemTechniquesTelangiectasisTestingTuberous Sclerosisataxia telangiectasia mutated proteincell typecomparativeeffective therapyexperimental studygranule cellhuman diseasehuman embryonic stem cellinduced pluripotent stem cellinsightmouse modelmutantmutation correctionnew therapeutic targetphosphoproteomicsresponsesingle-cell RNA sequencingstem cell differentiationstem cell modelsynaptic functionsynaptogenesistranscriptometranscriptomicsyoung adult
项目摘要
PROJECT SUMMARY
Ataxia-telangiectasia (A-T) is an autosomal recessive, multi-system, disorder caused by mutations in the
universally expressed ataxia-telangiectasia, mutated (ATM) gene affecting approximately 1:40,000-1:100,000
births, for which there is no cure. Characterized by progressive cerebellar neurodegeneration, there are no
effective treatments for A-T, with patients succumbing to chronic sinopulmonary infections or A-T related cancer
by the third decade of life. Furthermore, the cause of cerebellar neurodegeneration, chiefly affecting Purkinje
cells (PCs), the primary output neuron of the cerebellum, has remained elusive since the first descriptions of A-
T nearly 80 years ago, largely because mouse models do not recapitulate the human cerebellar phenotype of
PC death. Thus, the critical objectives of this proposal are to develop the first human A-T model system that
recapitulates the cerebellar phenotype and to use that system to identify molecular differences between patient
and unaffected PCs as well as differences between human and mouse PCs. Toward that end, we will use our
recently published protocol (Buchholz et al, 2020) to generate an induced pluripotent stem cell (iPSC) model
system and use that system to study the effects of A-T patient mutations on developing human PCs.
Using our protocol, we have been able to differentiate cerebellar Purkinje cells that match young adult
PCs on a transcriptomic level (Buchholz et al., 2020) and fire specific calcium currents in co-culture with their
target neurons, granule cells (GCs). Our specific aims in this proposal are therefore to use this protocol to
differentiate iPSCs derived from patients with A-T, as well as unaffected control iPSCs derived from family
members, into PCs to study A-T PC phenotypes, including defects in survival and synaptic function in co-culture
with GCs. To discover molecular changes in Purkinje cells with the A-T mutation, we will study global gene
expression and protein phosphorylation compared to controls. Critically, we will then use CRISPR-Cas9 prime
editing to correct the ATM mutation and test for rescue, including identifying key changes in rescued versus
mutant gene expression and proteomics. Taken together, these studies will identify pathways involved in A-T
PC phenotypes and will discover altered pathways that could provide novel targets for therapy.
项目概要
共济失调毛细血管扩张症 (A-T) 是一种常染色体隐性遗传、多系统疾病,由基因突变引起
普遍表达的共济失调毛细血管扩张症突变 (ATM) 基因影响约 1:40,000-1:100,000
分娩,目前尚无治愈方法。以进行性小脑神经变性为特征,没有
A-T 的有效治疗方法,患者死于慢性鼻窦肺部感染或 A-T 相关癌症
到生命的第三个十年。此外,小脑神经变性的原因主要影响浦肯野病
细胞(PC)是小脑的主要输出神经元,自从首次描述 A-
近 80 年前,主要是因为小鼠模型没有重现人类小脑表型
电脑死亡。因此,该提案的关键目标是开发第一个人类 A-T 模型系统
概括小脑表型并使用该系统来识别患者之间的分子差异
和不受影响的 PC 以及人类和鼠标 PC 之间的差异。为此,我们将利用我们的
最近发布的生成诱导多能干细胞 (iPSC) 模型的方案(Buchholz 等人,2020)
系统并使用该系统研究 A-T 患者突变对人类 PC 发育的影响。
使用我们的方案,我们已经能够区分与年轻人匹配的小脑浦肯野细胞
PC 在转录组水平上(Buchholz 等人,2020)并在与其共培养时发射特定的钙电流
目标神经元、颗粒细胞(GC)。因此,我们在本提案中的具体目标是使用该协议来
区分来自 A-T 患者的 iPSC 以及来自家庭的未受影响的对照 iPSC
成员进入PC来研究A-T PC表型,包括共培养中的存活和突触功能缺陷
与 GC。为了发现浦肯野细胞中 A-T 突变的分子变化,我们将研究全局基因
与对照相比,表达和蛋白质磷酸化。至关重要的是,我们将使用 CRISPR-Cas9 prime
编辑以纠正 ATM 突变并测试救援,包括识别救援与救援的关键变化
突变基因表达和蛋白质组学。总而言之,这些研究将确定 A-T 涉及的途径
PC表型并将发现改变的途径,为治疗提供新的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Elizabeth Hatten其他文献
Mary Elizabeth Hatten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Elizabeth Hatten', 18)}}的其他基金
A Bioengineering Approach to Develop a Laminar 3D Cerebellar Neuronal Circuit for Modeling Human Cerebellum
开发用于模拟人类小脑的层状 3D 小脑神经元回路的生物工程方法
- 批准号:
10444198 - 财政年份:2022
- 资助金额:
$ 46.61万 - 项目类别:
A Bioengineering Approach to Develop a Laminar 3D Cerebellar Neuronal Circuit for Modeling Human Cerebellum
开发用于模拟人类小脑的层状 3D 小脑神经元回路的生物工程方法
- 批准号:
10604377 - 财政年份:2022
- 资助金额:
$ 46.61万 - 项目类别:
Chromatin Changes During CNS Migration and Circuit Formation
中枢神经系统迁移和回路形成过程中染色质的变化
- 批准号:
10017341 - 财政年份:2019
- 资助金额:
$ 46.61万 - 项目类别:
Development of a model system to study human cerebellar neurons
开发研究人类小脑神经元的模型系统
- 批准号:
9066826 - 财政年份:2015
- 资助金额:
$ 46.61万 - 项目类别:
Development of a model system to study human cerebellar neurons
开发研究人类小脑神经元的模型系统
- 批准号:
8954174 - 财政年份:2015
- 资助金额:
$ 46.61万 - 项目类别:
Role of mPAR6 Polarity CNS Neuronal Migration
mPAR6 极性中枢神经系统神经元迁移的作用
- 批准号:
7352740 - 财政年份:2006
- 资助金额:
$ 46.61万 - 项目类别:
Role of Cdc42 and Par6 Polarity Complex in CNS Neuronal Migration
Cdc42 和 Par6 极性复合物在 CNS 神经元迁移中的作用
- 批准号:
8187605 - 财政年份:2006
- 资助金额:
$ 46.61万 - 项目类别:
Role of Cdc42 and Par6 Polarity Complex in CNS Neuronal Migration
Cdc42 和 Par6 极性复合物在 CNS 神经元迁移中的作用
- 批准号:
8627650 - 财政年份:2006
- 资助金额:
$ 46.61万 - 项目类别:
Role of mPAR6 Polarity CNS Neuronal Migration
mPAR6 极性中枢神经系统神经元迁移的作用
- 批准号:
7569420 - 财政年份:2006
- 资助金额:
$ 46.61万 - 项目类别:
Role of mPAR6 Polarity CNS Neuronal Migration
mPAR6 极性中枢神经系统神经元迁移的作用
- 批准号:
7761699 - 财政年份:2006
- 资助金额:
$ 46.61万 - 项目类别:
相似海外基金
Structural Mechanisms of DNA Damage Sensing and Activation of the ATR, Fanconi Anemia, and ATM Checkpoints
DNA 损伤感知和 ATR、范可尼贫血和 ATM 检查点激活的结构机制
- 批准号:
10639156 - 财政年份:2023
- 资助金额:
$ 46.61万 - 项目类别:
Non-canonical roles for ATM kinase in regulating mitochondrial function and redox homeostasis
ATM 激酶在调节线粒体功能和氧化还原稳态中的非典型作用
- 批准号:
10461498 - 财政年份:2022
- 资助金额:
$ 46.61万 - 项目类别:
Non-canonical roles for ATM kinase in regulating mitochondrial function and redox homeostasis
ATM 激酶在调节线粒体功能和氧化还原稳态中的非典型作用
- 批准号:
10640088 - 财政年份:2022
- 资助金额:
$ 46.61万 - 项目类别:
Plk1 as a prognostic biomarker for prostate cancer
Plk1 作为前列腺癌的预后生物标志物
- 批准号:
10664904 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别:
Mechanisms of mitochondrial genome integrity in familial and idiopathic Parkinson's disease
家族性和特发性帕金森病线粒体基因组完整性的机制
- 批准号:
10353124 - 财政年份:2021
- 资助金额:
$ 46.61万 - 项目类别: