Engineered 3D Periodontal Tissue Constructs for Defining Functional Outcomes of Regenerative Processes
用于定义再生过程功能结果的工程 3D 牙周组织结构
基本信息
- 批准号:10189554
- 负责人:
- 金额:$ 17.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAffectAgeAge-YearsArchitectureBiomedical EngineeringCD44 geneCatabolic ProcessCell physiologyCellsClinicalCollagenCollagen FibrilComplexDental CementumDental PlaqueEngineeringEnvironmentFutureGene ExpressionGoalsHarvestHealthHomeostasisHyaluronanHyaluronidaseIn SituIn VitroIndividualInflammationInflammation MediatorsInflammatoryInflammatory ResponseKnowledgeLaboratoriesLinkLongevityManualsMeasuresMechanicsMediatingModelingMyosin ATPaseNatural regenerationOligosaccharidesOralOutcomePathway interactionsPeriodontal DiseasesPeriodontal LigamentPeriodontitisPhysiologicalPilot ProjectsPlayPopulationProcessRegulationResearchRiskRoleSignal PathwaySignal TransductionSiliconesSystemic diseaseTLR4 geneTNF geneTechniquesTestingTimeTissuesTooth structureTractionWestern BlottingWorkage relatedaging populationboneclinical developmentdexterityenzyme activityfunctional outcomesinflammatory milieuinhibitor/antagonistnoveloral carepreservationreceptorreceptor bindingregeneration functionregenerativerhotechnique developmenttissue regenerationtool
项目摘要
Project Summary. Knowledge of the effects of inflammation on the regenerative functions of
periodontal ligament (PDL) cells is incomplete. This limits the development of techniques for
periodontal regeneration that will maintain functional tooth support over the long term.
Periodontal regeneration includes multiple cellular processes and a less understood component
of these processes is PDL cell contractility. Cellular contractile forces are critical to the
alignment of collagen fibrils that strengthen periodontal tissue and maintain its functional
integrity. The long-term goal of this research is to identify mechanisms regulating PDL cell
mechanics that can be used as clinical tools for regenerating and maintaining the architecture
and function of the periodontal complex over time. Thus, the objective of this proposal is to
demonstrate links between mechanisms regulating PDL cell contractile forces in
proinflammatory microenvironments with PDL architecture and tissue mechanics. The central
hypothesis of this proposal is that the inflammatory microenvironment regulates PDL cell
contractile forces with effects on PDL tissue architecture and mechanics. This hypothesis will be
tested in Specific Aim 1 through identification of mechanisms that regulate in vitro PDL cell
contractile forces within proinflammatory microenvironments at the single-cell level. Western
blots will be used to determine effects of tumor necrosis factor alpha (TNF) and hyaluronan
oligosaccharide (oHA) on signaling pathways that generate cellular contractile force, such as
the Rho/Rock pathway. In order to link the inflammatory environment and cell signaling with
contractility, cellular traction forces will be measured with and without inflammatory mediators
and signaling pathway inhibitors. In Specific Aim 2, three-dimensional PDL constructs will be
developed to link the signaling pathways that regulate tissue-level contractility with matrix
architecture and stiffness. Engineered PDL constructs will be developed using PDL cells and
collagen and in situ forces will be measured. PDL constructs will be treated with stimulants and
inhibitors of the Rho/Rock pathway under conditions that model periodontal homeostasis and
inflammation. The successful completion of these aims will contribute to the development of
clinical techniques for maintaining the PDL or regenerated tissues in a proinflammatory
environment. Future research will expand this model to include cementum-like tissue and bone;
thus, this pilot study is an initial step toward the future goal of regenerating the periodontal
complex and maintaining its functional integrity over the long-term.
项目摘要了解炎症对再生功能的影响。
牙周膜(PDL)细胞不完整,这限制了技术的发展。
牙周再生将长期维持功能性牙齿支撑。
牙周再生包括多个细胞过程和一个不太了解的组成部分
这些过程中 PDL 细胞的收缩力对于细胞的收缩至关重要。
胶原纤维排列,强化牙周组织并维持其功能
这项研究的长期目标是确定调节 PDL 细胞的机制。
可用作再生和维护架构的临床工具的力学
牙周复合体随时间的变化和功能因此,该提案的目标是
证明调节 PDL 细胞收缩力的机制之间的联系
具有 PDL 结构和组织力学的促炎微环境。
该提议的假设是炎症微环境调节 PDL 细胞
收缩力对 PDL 组织结构和力学的影响将是这一假设。
通过鉴定体外调节 PDL 细胞的机制,在特定目标 1 中进行测试
单细胞水平上促炎微环境中的收缩力。
印迹将用于确定肿瘤坏死因子 α (TNFα) 和透明质酸的作用
寡糖 (oHA) 作用于产生细胞收缩力的信号通路,例如
Rho/Rock 通路,以将炎症环境和细胞信号传导联系起来。
将在有或没有炎症介质的情况下测量收缩性、细胞牵引力
在具体目标 2 中,将构建三维 PDL 结构。
开发用于将调节组织水平收缩性的信号通路与基质连接起来
工程 PDL 结构将使用 PDL 细胞和进行开发。
将测量胶原蛋白和原位力,并用兴奋剂进行处理。
在模拟牙周稳态的条件下,Rho/Rock 通路的抑制剂和
这些目标的成功完成将有助于炎症的发展。
在促炎状态下维持 PDL 或再生组织的临床技术
未来的研究将扩展该模型以包括牙骨质样组织和骨骼;
因此,这项试点研究是朝着牙周再生的未来目标迈出的第一步。
复杂并长期保持其功能完整性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Black dots: High-yield traction force microscopy reveals structural factors contributing to platelet forces.
- DOI:10.1016/j.actbio.2021.11.013
- 发表时间:2023-06
- 期刊:
- 影响因子:9.7
- 作者:Beussman, Kevin M.;Mollica, Molly Y.;Leonarda, Andrea;Milesc, Jeffrey;Hocterd, John;Songe, Zizhen;Stollac, Moritz;Hang, Sangyoon J.;Emerya, Ashley;Thomasb, Wendy E.;Sniadecki, Nathan J.
- 通讯作者:Sniadecki, Nathan J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TRACY E POPOWICS其他文献
TRACY E POPOWICS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TRACY E POPOWICS', 18)}}的其他基金
Engineered 3D Periodontal Tissue Constructs for Defining Functional Outcomes of Regenerative Processes
用于定义再生过程功能结果的工程 3D 牙周组织结构
- 批准号:
10038285 - 财政年份:2020
- 资助金额:
$ 17.65万 - 项目类别:
Biomechanical and Molecular Mechanisms in Alveolar Bone Development
牙槽骨发育的生物力学和分子机制
- 批准号:
7260519 - 财政年份:2005
- 资助金额:
$ 17.65万 - 项目类别:
Biomechanical/Molecular Mechanisms in Alveolar Bone
牙槽骨的生物力学/分子机制
- 批准号:
7048381 - 财政年份:2005
- 资助金额:
$ 17.65万 - 项目类别:
Biomechanical and Molecular Mechanisms in Alveolar Bone Development
牙槽骨发育的生物力学和分子机制
- 批准号:
7119591 - 财政年份:2005
- 资助金额:
$ 17.65万 - 项目类别:
Biomechanical and Molecular Mechanisms in Alveolar Bone Development
牙槽骨发育的生物力学和分子机制
- 批准号:
7476506 - 财政年份:2005
- 资助金额:
$ 17.65万 - 项目类别:
相似国自然基金
生长发育期镧暴露影响钙信号与血脑屏障细胞旁通透性的研究
- 批准号:81502837
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
抑制LIMK2从而直接特异性地提高成骨细胞的力学敏感性对加速骨改建进程的影响及其分子机制的研究
- 批准号:81570955
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
从肌动蛋白骨架重排探讨益气清热解毒法对肾小球足细胞损伤的影响
- 批准号:81473614
- 批准年份:2014
- 资助金额:74.0 万元
- 项目类别:面上项目
组蛋白乙酰化酶抑制物(INHAT)SET对食管癌细胞"间充质式迁移"的影响及机制研究
- 批准号:U1404817
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:联合基金项目
ATP水解机理对肌动蛋白组装成纤维过程的影响
- 批准号:21274038
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 17.65万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 17.65万 - 项目类别:
Determining the ultrastructural differences between dually and singly innervated dendritic spines and their changes following glutamate excitotoxicity using Cryo-Electron Tomography
使用冷冻电子断层扫描确定双重和单神经支配的树突棘之间的超微结构差异及其在谷氨酸兴奋性毒性后的变化
- 批准号:
10679214 - 财政年份:2023
- 资助金额:
$ 17.65万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 17.65万 - 项目类别: