Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
基本信息
- 批准号:10352444
- 负责人:
- 金额:$ 11.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:African American populationAmino AcidsAsiaAsian ancestryAsian populationBiologicalBiological AssayBiological MarkersBlood specimenCaliforniaCancer EtiologyCaucasiansCessation of lifeClinicalClinical DataCohort StudiesDataData AnalysesDatabasesDiagnosisDiagnosticDiseaseEarly DiagnosisEpidemiologyEthnic OriginEtiologyEuropeEuropeanEvaluationFunctional disorderGastrointestinal DiseasesGeneticGenomicsHealthHospitalsIncidenceIndividualJapanese AmericanLife StyleLightMalignant NeoplasmsMalignant neoplasm of pancreasMedical GeneticsMedicare claimMentorsMetabolicMetabolic syndromeMinorityMinority GroupsModelingNative HawaiianOrganPancreasParticipantPathogenesisPathway interactionsPatternPerformancePhasePopulationPopulation HeterogeneityPreventionPrognosisProspective cohortQuestionnairesRaceResearchResearch DesignResourcesRiskRisk FactorsRunningSamplingScreening for cancerStandardizationSubgroupSurvival RateSystems BiologyTechniquesUnited Statesassociated symptombasebiobankcancer riskcohortdesignepidemiologic datagastrointestinal symptomgenetic variantgenome-widegenomic datahigh riskimprovedinsightmetabolomicsmortalitymulti-ethnicneoplasm registrynovelpancreatic cancer modelpredictive modelingracial diversityrisk prediction modelrisk stratificationsex
项目摘要
ABSTRACT
Pancreatic cancer is a highly lethal malignancy that has a very poor prognosis in the United States. It has a 5-
year survival rate of only 9% and is projected to become the second most common cancer death by 2030.
Pancreatic cancer also has a disproportionate burden across race/ethnicity, with higher incidence rates observed
among minority groups, such African Americans, Japanese Americans, and Native Hawaiians. Past prediction
models have been developed to identify high-risk individuals and improve the earlier detection of this disease.
However, these models were designed in individuals of primarily European or Asian ancestry and have not been
validated in multiethnic populations. In addition, these models included mainly known epidemiologic risk factors
and only a few incorporated data on genetic variants or health conditions. Thus, a model that employs more
granular data, such as comorbidities/symptoms, genomics and metabolomics, for the prediction of pancreatic
cancer across multiple races/ethnicities does not exist. In this study, we seek to apply an integrative systems
biology approach to enhance the prediction of pancreatic cancer risk using data from the Multiethnic Cohort
(MEC) Study. The MEC is a long-standing prospective cohort of over 215,000 racially diverse individuals that
has comprehensive lifestyle, environmental, clinical, and genetic data. We will use data from existing resources
of the MEC, including epidemiologic risk factors from questionnaires, clinical health conditions from Medicare
claims, genetic data from a large biorepository of blood samples, and cancer incidence and mortality information
from SEER Cancer registries and state and national mortality databases. We will also generate new metabolomic
data for a subset of MEC participants. Our specific aims are: 1) to identify clusters or patterns of clinical conditions
associated with pancreatic cancer risk; 2) to validate existing prediction models in a multiethnic population and
develop an enhanced prediction model that incorporates epidemiologic, clinical and genomic data; 3) to identify
metabolites associated with pancreatic cancer in a multiethnic population; and 4) to integrate epidemiologic,
clinical, genomic and metabolomic data to identify individuals at high risk of pancreatic cancer. Results from this
study are expected to elucidate etiologic mechanisms and improve the prediction of pancreatic cancer risk for
heterogeneous populations. This will have significant implications for improving strategies for earlier detection
and reducing the overwhelming burden of this fatal cancer.
抽象的
胰腺癌是一种高度致命的恶性肿瘤,在美国的预后较差。它有5-
年份的生存率仅为9%,预计到2030年将成为第二常见的癌症死亡。
胰腺癌在种族/种族之间也有不成比例的负担,观察到更高的发病率
在少数群体中,这些非洲裔美国人,日裔美国人和夏威夷原住民。过去的预测
已经开发出模型来识别高风险个体并改善对该疾病的早期发现。
但是,这些模型是在主要是欧洲或亚洲血统的个体中设计的,但不是
在多种族人群中得到验证。此外,这些模型主要包括已知的流行病学风险因素
只有少数关于遗传变异或健康状况的数据。因此,采用更多的模型
用于预测胰腺的颗粒数据,例如合并症/症状,基因组学和代谢组学
跨多个种族/种族的癌症不存在。在这项研究中,我们试图应用一个集成系统
使用来自多民族队列的数据来增强胰腺癌风险预测的生物学方法
(MEC)研究。 MEC是一个长期的前瞻性队列,由超过215,000个种族多样化的人
具有全面的生活方式,环境,临床和遗传数据。我们将使用现有资源中的数据
MEC的,包括问卷调查的流行病学风险因素,Medicare的临床健康状况
主张,来自大量血液样本的遗传数据以及癌症的发病率和死亡率信息
来自SEER癌症注册机构以及州和国家死亡率数据库。我们还将生成新的代谢组
MEC参与者子集的数据。我们的具体目的是:1)确定临床条件的簇或模式
与胰腺癌风险相关; 2)验证多种族人口中的现有预测模型和
开发一个增强的预测模型,该模型结合了流行病学,临床和基因组数据。 3)识别
多种族人口中与胰腺癌相关的代谢产物; 4)要整合流行病学,
临床,基因组和代谢组数据,以鉴定胰腺癌高风险的个体。结果
预计研究将阐明病因机制,并改善胰腺癌风险的预测
异质种群。这将对改善较早检测的策略产生重大影响
并减轻了这种致命癌症的压倒性负担。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Healthcare Utilization Among Patients Diagnosed with COVID-19 in a Large Integrated Health System.
- DOI:10.1007/s11606-021-07139-z
- 发表时间:2022-03
- 期刊:
- 影响因子:5.7
- 作者:Huang BZ;Creekmur B;Yoo MS;Broder B;Subject C;Sharp AL
- 通讯作者:Sharp AL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Huang其他文献
Brian Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Huang', 18)}}的其他基金
Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
- 批准号:
10745361 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
- 批准号:
10115540 - 财政年份:2021
- 资助金额:
$ 11.99万 - 项目类别:
相似国自然基金
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
- 批准号:82301621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
- 批准号:82373354
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
- 批准号:
10745361 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
- 批准号:
10115540 - 财政年份:2021
- 资助金额:
$ 11.99万 - 项目类别:
Leveraging PfCRT Structure to Discern Function and Predict Emergence of Drug-Resistant Malaria
利用 PfCRT 结构识别功能并预测耐药性疟疾的出现
- 批准号:
10443625 - 财政年份:2019
- 资助金额:
$ 11.99万 - 项目类别:
Leveraging PfCRT Structure to Discern Function and Predict Emergence of Drug-Resistant Malaria
利用 PfCRT 结构识别功能并预测耐药性疟疾的出现
- 批准号:
10199925 - 财政年份:2019
- 资助金额:
$ 11.99万 - 项目类别:
Leveraging PfCRT Structure to Discern Function and Predict Emergence of Drug-Resistant Malaria
利用 PfCRT 结构识别功能并预测耐药性疟疾的出现
- 批准号:
10653063 - 财政年份:2019
- 资助金额:
$ 11.99万 - 项目类别: