Can suicide theory-guided natural language processing of clinical progress notes improve existing prediction models of Veteran suicide mortality?
自杀理论指导的临床进展笔记自然语言处理能否改善现有的退伍军人自杀死亡率预测模型?
基本信息
- 批准号:10187800
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAreaAttentionAutomated AnnotationCaringClinicalDataData CollectionData ScienceDetectionDevelopmentElectronic Health RecordEnsureEventFeeling hopelessFeeling suicidalFemaleGenderGoalsInformation RetrievalInterventionKnowledgeLanguageLeadershipLinguisticsMachine LearningMapsMedicalMedicineMental HealthMethodologyMethodsModelingNatural Language ProcessingNomenclatureOntologyPainPatientsPerformanceReadabilityResearchResourcesRisk AssessmentRisk BehaviorsRisk FactorsSignal TransductionStructureSuicideSuicide attemptSuicide preventionSystemSystematized Nomenclature of MedicineTarget PopulationsTextTimeTranslatingVeteransVeterans Health Administrationclinical encounterclinical practiceconcept mappingdata repositorydata warehousedesignhands-on learninghigh riskimplementation facilitationimprovedinnovationmachine learning algorithmnovelphrasespredictive modelingpsychologicrandom forestreducing suiciderisk prediction modelstructured datasuicidal behaviorsuicidal morbiditysuicidal risksuicide mortalitysuicide ratesupport vector machinetext searchingtheoriestool
项目摘要
Background: Reducing suicide and suicide attempts among U.S. Veterans is a major national priority, as
more than 6,000 Veterans die by suicide every year and many more attempt suicide. In 2017, the most recent
year for which data are available, the suicide rate among Veterans was 1.5 times the rate of non-Veterans, and
the suicide rate among female Veterans was 2.2 times the rate of non-Veteran females. Current VHA suicide
risk prediction models suffer from high numbers of false negatives - Veterans not deemed at high risk of
suicide who do attempt or die by suicide. These suicide prediction models have not incorporated the rich
information from clinical progress notes that may improve our ability to predict suicidal behavior. Much of this
information in clinical progress notes is unstructured free text. A suicide-specific ontology and information
extraction system that can extract suicide-related information from unstructured clinical progress notes is not
available.
Significance/Impact: Enhancing VHA's ability to identify Veterans who are most likely to attempt suicide
ensures that limited intervention resources can be focused on Veterans with the highest risk, before they
attempt suicide or die by suicide. The proposed study is well-aligned with priorities for HSR&D research and
with VA strategic goals for 2018 – 2024 set out by VA leadership, who listed suicide prevention as “VA's
highest clinical priority.”
Innovation: Our key methodological innovation is to pair a state-of-the-art theoretical framework (3-step
Theory of Suicide) to predict who is most likely to act on their suicidal thoughts with state-of-the-art data
science methods (NLP, machine learning). Since our suicide-theory concepts, that is hopelessness,
connectedness, psychological pain, and capacity for suicide, are not represented in structured patient data, we
will develop novel NLP and information extraction tools and apply them to clinical progress notes, the potential
of which has not been fully levied to improve suicide prediction models.
Specific Aims: We have three specific aims:
1. Develop a suicide-specific ontology for machine recognition of hopelessness, connectedness,
psychological pain, and capacity for suicide in progress notes of clinical encounters with Veterans who
attempted or died by suicide.
2. Extract information on the presence and intensity of hopelessness, connectedness, psychological pain,
and capacity for suicide in clinical progress notes and describe change in these concepts in proximity of
a suicide or suicide attempt.
3. Determine the predictive validity of hopelessness, connectedness, psychological pain, and capacity for
suicide regarding Veteran suicide attempts and mortality in two prediction models that VA currently
uses in clinical practice: STORM and REACHVET.
Methodology: The proposed mixed-methods study has an exploratory sequential design where a qualitative
component (Aim 1) informs quantitative analyses (Aims 2 and 3). Data collection will be from existing clinical
progress notes in VHA's Corporate Data Warehouse, VA's Suicide Prevention Applications Network and from
the VA/DoD Suicide Data Repository. We will use linguistic annotation and thematic analysis for Aim 1 and
natural language processing and machine learning models for Aims 2 and 3. The target population is Veterans
who receive care through VHA.
Next Steps/Implementation: Our most important next step is to be in regular contact with local and national
colleagues at the VA Office of Mental Health and Suicide Prevention (OMHSP) to facilitate implementation of
our results in the operational versions of STORM and REACHVET.
背景:减少美国退伍军人的自杀和自杀未遂是国家的一项重大优先事项,因为
每年有超过 6,000 名退伍军人自杀身亡,最近一次是 2017 年,更多退伍军人尝试自杀。
根据现有数据,退伍军人的自杀率是非退伍军人的 1.5 倍,并且
女性退伍军人的自杀率是当前 VHA 女性非退伍军人自杀率的 2.2 倍。
风险预测模型存在大量误报 - 退伍军人不被认为具有高风险
这些自杀预测模型并未将富人纳入其中。
临床进展的信息表明,这可能会提高我们预测自杀行为的能力。
临床进展笔记中的信息是非结构化的自由文本,是针对自杀的本体论和信息。
可以从非结构化临床进展记录中提取自杀相关信息的提取系统并不存在
可用的。
意义/影响:增强 VHA 识别最有可能试图自杀的退伍军人的能力
确保有限的干预资源可以集中在风险最高的退伍军人身上,然后再
拟议的研究与 HSR&D 研究的优先事项非常一致。
VA 领导层制定了 VA 2018 – 2024 年战略目标,其中将预防自杀列为“VA
临床优先级最高。”
创新:我们的关键方法创新是将最先进的理论框架(三步
自杀理论)利用最先进的数据预测谁最有可能按照自杀想法采取行动
科学方法(NLP,机器学习)自从我们的自杀理论概念以来,那就是绝望,
连通性、心理痛苦和自杀能力并未在结构化患者数据中体现,我们
将开发新颖的 NLP 和信息提取工具并将其应用于临床进展记录,潜在的
其中尚未完全用于改善自杀预测模型。
具体目标:我们有三个具体目标:
1. 开发一种针对自杀的本体论,用于机器识别绝望、关联性、
心理痛苦和自杀能力的进展记录与退伍军人的临床接触
企图自杀或自杀身亡。
2. 提取有关绝望、联系、心理痛苦的存在和强度的信息,
和临床进展中的自杀能力记录并描述这些概念的变化
自杀或自杀未遂。
3. 确定绝望、联系、心理痛苦和能力的预测有效性
退伍军人自杀企图和死亡率的自杀率目前有两个预测模型
临床实践中的用途:STORM 和 REACHVET。
方法:拟议的混合方法研究采用探索性序贯设计,其中定性研究
组件(目标 1)为定量分析提供信息(目标 2 和 3)数据收集来自现有的临床。
VHA 企业数据仓库、VA 自杀预防应用网络以及来自
我们将为目标 1 和 VA/DoD 自杀数据库使用语言注释和主题分析。
目标 2 和 3 的自然语言处理和机器学习模型。目标人群是退伍军人
通过 VHA 接受护理的人。
后续步骤/实施:我们下一步最重要的步骤是与当地和国家定期联系
退伍军人管理局心理健康和自杀预防办公室 (OMHSP) 的同事们致力于促进实施
我们在 STORM 和 REACHVET 运行版本中的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Sox-Harris其他文献
Alex Sox-Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Sox-Harris', 18)}}的其他基金
Addressing the Gap in Feasible, Valid, and Important Quality Measures for the Treatment of Carpal Tunnel Syndrome
弥补治疗腕管综合症的可行、有效和重要的质量措施方面的差距
- 批准号:
10240300 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Addressing the Gap in Feasible, Valid, and Important Quality Measures for the Treatment of Carpal Tunnel Syndrome
弥补治疗腕管综合症的可行、有效和重要的质量措施方面的差距
- 批准号:
10506324 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Development and Validation of a Risk Calculator for Total Joint Replacement
全关节置换风险计算器的开发和验证
- 批准号:
9921210 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Improving the Quality of Addiction Treatment Quality Measurement
提高成瘾治疗质量测量的质量
- 批准号:
8269875 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Improving the Quality of Addiction Treatment Quality Measurement
提高成瘾治疗质量测量的质量
- 批准号:
8597287 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Alcohol Screening Scores and Medical Outcomes: Age and Gender Influences
酒精筛查分数和医疗结果:年龄和性别的影响
- 批准号:
7387264 - 财政年份:2008
- 资助金额:
-- - 项目类别:
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Social Connectedness and Health among Gender Minority People of Color
性别少数有色人种的社会联系和健康
- 批准号:
10650066 - 财政年份:2023
- 资助金额:
-- - 项目类别:
2/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
2/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10637187 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Recruitment of Cerebellar Circuits with Balance Training for Cognitive Rehabilitation in a Mouse Model of Mild Traumatic Brain Injury
在轻度创伤性脑损伤小鼠模型中通过平衡训练募集小脑回路进行认知康复
- 批准号:
10753349 - 财政年份:2023
- 资助金额:
-- - 项目类别: