Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
基本信息
- 批准号:10183251
- 负责人:
- 金额:$ 84.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionBiochemical PathwayBiologicalBiologyBloodCatalogingChemicalsClinicalCommunicationCommunitiesComputer softwareDataData SetDatabasesDetectionDevelopmentDiseaseEnsureEnvironmental ExposureFractionationFundingFutureGoalsHigh Pressure Liquid ChromatographyHumanHybridsIsotopesLibrariesMass FragmentographyMethodsMichiganMolecularMorphologic artifactsOutputPathway interactionsProductivityResearchResearch DesignResearch PersonnelResolutionSamplingScientistSiteSpectrometryStable Isotope LabelingStandardizationStructureSurveysTechniquesTechnologyTestingTimeTissuesUnited States National Institutes of HealthWorkadductbasebiomarker discoverydata repositoryhuman diseaseimprovedimproved outcomein silicoin vivoindexinginsightinstrumentationinterestion mobilitymembermetabolomicsmultimodalitynoveloperationprogramsrepositorytandem mass spectrometrytoolultra high pressure
项目摘要
Overall - Project Summary
As a member of the NIH Common Funds Metabolomics Consortium, the Michigan Compound Identification
Development Core (MCIDC) will using cutting-edge computational and experimental methods to systematically
identify metabolites among the high proportion of features in untargeted metabolomics data which are
presently considered unknown. In so doing, we will address a long-standing challenge in the field of
metabolomics and enhance biological insights from extant and future metabolomics data. Our data will greatly
contribute to platform-agnostic, rapidly-searchable metabolite databases, and the methods we develop will
facilitate future compound identification efforts. We will achieve these goals by carrying out the following aims:
Through the computational core of MCIDC, we will refine software currently operational in our lab that aids in
annotation of features in untargeted metabolomics data as either primary features or as artifacts or degenerate
features (e.g., isotopes, fragments, adducts, contaminants). This software will help prioritize identification
efforts on primary features, while allowing artifacts and degenerate features to be indexed and rapidly removed
from future data sets. We will implement a `hybrid search' approach that will allow unknown metabolite spectra
to be searched against both in-silico and experimentally-derived spectra of compounds with similar structural
motifs. We expect this approach will improve certainty of metabolite identification compared to in-silico spectra
alone. We will contribute our data output to the National Metabolomics Data Repository and other databases.
Through the experimental core of MCIDC, we will develop and implement novel and cutting-edge analytical
technologies to aid in compound identification, and will systematically apply these techniques to unknown
primary features in metabolomics data determined to be of high priority based on survey of public
metabolomics databases. Techniques we will use to identify metabolites include high-resolution tandem mass
spectrometry (MSn), ion mobility spectrometry, high-resolution chromatographic methods including ultra-high
pressure liquid chromatography, sample pre-fractionation and multidimensional separations, in-vivo stable
isotope labeling for structural elucidation, chemical derivatization, pre-concentration followed by NMR analysis,
and (when necessary) synthesis and characterization of novel metabolite standards.
Finally, through our administrative core, we will ensure coordinated operation between our own experimental
and computational cores, and with other members of the NIH common funds metabolomics consortium. By
coordinating between CIDC sites and prioritizing compound identification tasks as a group, we will maximize
productivity and improve outcome of the metabolomics consortium efforts.
By carrying out these aims, we anticipate that our CIDC will yield a lasting, unifying impact on interpretation of
biological findings from the rich and growing datasets yielded by untargeted metabolomics.
总体 - 项目摘要
作为 NIH 共同基金代谢组学联盟的成员,密歇根化合物鉴定
开发核心(MCIDC)将使用尖端的计算和实验方法系统地
在非目标代谢组学数据的高比例特征中识别代谢物,这些特征是
目前认为未知。通过这样做,我们将解决该领域长期存在的挑战
代谢组学并增强对现有和未来代谢组学数据的生物学见解。我们的数据将大大
为与平台无关、可快速搜索的代谢物数据库做出贡献,我们开发的方法将
促进未来的化合物鉴定工作。我们将通过实现以下目标来实现这些目标:
通过 MCIDC 的计算核心,我们将改进实验室当前运行的软件,以帮助
将非目标代谢组学数据中的特征注释为主要特征、伪影或简并特征
特征(例如同位素、碎片、加合物、污染物)。该软件将有助于优先识别
致力于主要功能,同时允许对伪影和退化功能进行索引并快速删除
来自未来的数据集。我们将实施“混合搜索”方法,允许未知的代谢物光谱
可以根据具有相似结构的化合物的计算机和实验衍生光谱进行搜索
主题。与计算机光谱相比,我们预计这种方法将提高代谢物鉴定的确定性
独自的。我们将把我们的数据输出贡献给国家代谢组学数据存储库和其他数据库。
通过MCIDC的实验核心,我们将开发和实施新颖、前沿的分析方法
技术来帮助化合物鉴定,并将系统地将这些技术应用于未知的
根据公众调查确定代谢组学数据的主要特征是高度优先的
代谢组学数据库。我们将用于鉴定代谢物的技术包括高分辨率串联质量
光谱分析法 (MSn)、离子迁移光谱分析法、高分辨率色谱方法,包括超高分辨色谱法
压力液相色谱、样品预分级和多维分离、体内稳定
用于结构阐明、化学衍生、预浓缩和核磁共振分析的同位素标记,
以及(必要时)新型代谢物标准品的合成和表征。
最后,通过我们的行政核心,我们将确保我们自己的实验之间的协调运作。
和计算核心,以及 NIH 共同基金代谢组学联盟的其他成员。经过
通过协调 CIDC 站点并作为一个整体确定化合物鉴定任务的优先顺序,我们将最大限度地
生产力并改善代谢组学联盟努力的成果。
通过实现这些目标,我们预计我们的 CIDC 将对解释世界观产生持久、统一的影响。
来自非目标代谢组学产生的丰富且不断增长的数据集的生物学发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES ROBERT EVANS其他文献
CHARLES ROBERT EVANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES ROBERT EVANS', 18)}}的其他基金
Meta-Analysis of Metabolic Determinants of Exercise Response in Common Funds Data
共同基金数据中运动反应代谢决定因素的荟萃分析
- 批准号:
10772237 - 财政年份:2023
- 资助金额:
$ 84.57万 - 项目类别:
Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
- 批准号:
10012966 - 财政年份:2018
- 资助金额:
$ 84.57万 - 项目类别:
Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
- 批准号:
10257642 - 财政年份:2018
- 资助金额:
$ 84.57万 - 项目类别:
Inter-lab comparison of unknowns in polar metabolomics data
极性代谢组学数据中未知数的实验室间比较
- 批准号:
10397327 - 财政年份:2018
- 资助金额:
$ 84.57万 - 项目类别:
Michigan Compound Identification Development Cores (MCIDC)
密歇根化合物鉴定开发核心 (MCIDC)
- 批准号:
9764380 - 财政年份:2018
- 资助金额:
$ 84.57万 - 项目类别:
Metabolic flux in a model of reduced oxidative capacity
氧化能力降低模型中的代谢通量
- 批准号:
8279343 - 财政年份:2011
- 资助金额:
$ 84.57万 - 项目类别:
Metabolic flux in a model of reduced oxidative capacity
氧化能力降低模型中的代谢通量
- 批准号:
8663248 - 财政年份:2011
- 资助金额:
$ 84.57万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Quantitative Normalization of Spatial Metabolomics for Molecular Signatures of Tissue Heterogeneity
组织异质性分子特征的空间代谢组学定量标准化
- 批准号:
10603667 - 财政年份:2023
- 资助金额:
$ 84.57万 - 项目类别:
Neurochemical mechanisms governing footshock-induced suppression of methamphetamine intake
控制足部电击引起的甲基苯丙胺摄入抑制的神经化学机制
- 批准号:
10527890 - 财政年份:2022
- 资助金额:
$ 84.57万 - 项目类别:
Regulation of Endothelial Lipid Metabolism in the Setting of Diabetes and Critical Limb Ischemia to Prevent Surgical Complications
糖尿病和严重肢体缺血时调节内皮脂质代谢以预防手术并发症
- 批准号:
10375540 - 财政年份:2021
- 资助金额:
$ 84.57万 - 项目类别:
Regulation of Endothelial Lipid Metabolism in the Setting of Diabetes and Critical Limb Ischemia to Prevent Surgical Complications
糖尿病和严重肢体缺血时调节内皮脂质代谢以预防手术并发症
- 批准号:
10209164 - 财政年份:2021
- 资助金额:
$ 84.57万 - 项目类别: